共 50 条
3-D vertically aligned few layer graphene - partially reduced graphene oxide/sulfur electrodes for high performance lithium-sulfur batteries
被引:13
|作者:
Singh, D. P.
[1
,2
]
Soin, N.
[3
,4
]
Sharma, S.
[5
]
Basak, S.
[6
]
Sachdeva, S.
[1
]
Roy, S. S.
[7
]
Zanderbergen, H. W.
[6
]
McLaughlin, J. A.
[4
]
Huijben, M.
[2
]
Wagemaker, M.
[1
]
机构:
[1] Delft Univ Technol, Fac Appl Sci, Delft, Netherlands
[2] Univ Twente, MESA, Enschede, Netherlands
[3] Univ Bolton, IMRI, Bolton BL3 5AB, England
[4] Univ Ulster, Nanotechnol & Bioengn Ctr NIBEC, Jordanstown BT37 0QB, North Ireland
[5] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
[6] Delft Univ Technol, Kavli Inst Nanosci, Delft, Netherlands
[7] Shiv Nadar Univ, Sch Nat Sci, Dept Phys, Gautam Buddha Nagar 201314, Uttar Pradesh, India
来源:
关键词:
LI-S BATTERIES;
COMPOSITE CATHODES;
CATALYTIC GROWTH;
RATE CAPABILITY;
HIGH-CAPACITY;
CARBON;
OXIDE;
POLYSULFIDE;
NANOCOMPOSITE;
NANOPARTICLES;
D O I:
10.1039/c7se00195a
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
3-D vertically aligned few-layered graphene (FLGs) nanoflakes synthesised using microwave plasma enhanced chemical vapour deposition are melt-impregnated with partially reduced graphene oxidesulfur (PrGO-S) nanocomposites for use in lithium-sulfur batteries. The aligned structure and the presence of interconnected micro voids/channels in the 3-D FLG/PrGO-S electrodes serves as template not only for the high sulfur loading (up to 80 wt%, areal loading of 1.2mg cm(-2)) but also compensates for the volume changes occurring during charge-discharge cycles. The inter-connectivity of the electrode system further facilitates fast electronic and ionic transport pathways. Consequently, the binder-free 3-D FLG/PrGO-S electrodes display a high first-cycle capacity (1320 mA h g(-1) at C/20), along with excellent rate capability of similar to 830mA h g(-1) and 700 mA h g(-1) at 2C and 5C rates, respectively. The residual functional groups of PrGO (-OH, -C-O-C-and -COOH) facilitate fast and reversible capture of Li+ ions while confining the polysulfide shuttles, thus, contributing to excellent cycling capability and retention capacity. The 3D electrodes demonstrate excellent capacity retention of similar to 80% (1040 mA h g(-1) at C/10) over 350 charge-discharge cycles. Comparatively, the 2-D planar PrGO-S electrodes displayed poor electronic conductivity and can only provide 560 mA h g(-1) after 150 cycles, thereby further highlighting the vital role of the electrode morphology in improving the electrochemical performance of Li-S batteries.
引用
收藏
页码:1516 / 1523
页数:8
相关论文