Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data

被引:17
|
作者
Zhou, Ling [1 ,2 ]
Lin, Huazhen [1 ,2 ]
Liang, Hua [3 ]
机构
[1] Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Sichuan, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Sichuan, Peoples R China
[3] George Washington Univ, Dept Stat, Washington, DC 20052 USA
基金
中国国家自然科学基金;
关键词
Curse of dimensionality; Full quasi-likelihood function; Gaussian process; Longitudinal data; Nonparametric structure; Semiparametric efficiency; PRINCIPAL COMPONENT ANALYSIS; CONVERGENCE-RATES; LATENT PROCESS; MODELS; REGRESSION;
D O I
10.1080/01621459.2017.1356317
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the estimation of mean and covariance functions for longitudinal and sparse functional data by using the full quasi-likelihood coupling a modification of the local kernel smoothing method. The proposed estimators are shown to be consistent, asymptotically normal, and semiparametrically efficient in terms of their linear functionals. Their superiority to the competitors is further illustrated numerically through simulation studies. The method is applied to analyze AIDS study and atmospheric study. Supplementary materials for this article are available online.
引用
收藏
页码:1550 / 1564
页数:15
相关论文
共 50 条
  • [21] Robust estimation in joint mean–covariance regression model for longitudinal data
    Xueying Zheng
    Wing Kam Fung
    Zhongyi Zhu
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 617 - 638
  • [22] Joint estimation for single index mean—covariance models with longitudinal data
    Chaohui Guo
    Hu Yang
    Jing Lv
    Jibo Wu
    [J]. Journal of the Korean Statistical Society, 2016, 45 : 526 - 543
  • [23] Efficient nonparametric estimation of Toeplitz covariance matrices
    Klockmann, K.
    Krivobokova, T.
    [J]. BIOMETRIKA, 2024, 111 (03) : 843 - 864
  • [24] Mean and Covariance Estimation for Functional Snippets
    Lin, Zhenhua
    Wang, Jane-Ling
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (537) : 348 - 360
  • [25] RKHS-based functional nonparametric regression for sparse and irregular longitudinal data
    Avery, Matthew
    Wu, Yichao
    Helen Zhang, Hao
    Zhang, Jiajia
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02): : 204 - 216
  • [26] Robust estimation in joint mean-covariance regression model for longitudinal data
    Zheng, Xueying
    Fung, Wing Kam
    Zhu, Zhongyi
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (04) : 617 - 638
  • [27] A NONPARAMETRIC ESTIMATOR FOR THE COVARIANCE FUNCTION OF FUNCTIONAL DATA
    Sancetta, Alessio
    [J]. ECONOMETRIC THEORY, 2015, 31 (06) : 1359 - 1381
  • [28] Joint estimation for single index mean-covariance models with longitudinal data
    Guo, Chaohui
    Yang, Hu
    Lv, Jing
    Wu, Jibo
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2016, 45 (04) : 526 - 543
  • [29] Nonparametric mean estimation with missing data
    González-Manteiga, W
    Pérez-González, A
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (02) : 277 - 303
  • [30] NONPARAMETRIC ESTIMATION OF FUNCTIONS IN A MODEL OF COMPETING RISKS FROM INCOMPLETE LONGITUDINAL DATA
    MODE, CJ
    [J]. MATHEMATICAL BIOSCIENCES, 1979, 45 (1-2) : 1 - 20