Polynomial generators of recursively enumerable languages

被引:0
|
作者
Kortelainen, J [1 ]
机构
[1] Univ Oulu, Dept Informat Proc Sci, Oulu, Finland
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For each language L, let <(F)overcap >(boolean AND)(L) be the smallest intersection-closed full AFL generated by the language L. Furthermore, for each natural number k >= 2 let P-k = {a(nk) vertical bar n is an element of N}. By applying certain classical and recent results on Diophantine equations we show that L-RE = (F) over cap (boolean AND)(P-k), i.e., the family of all recursively enumerable languages coincides with the smallest intersection-closed full AFL generated by the polynomial language Pk for all k >= 2. This allows us to answer to an open problem of S. Ginsburg and J. Goldstine in [2].
引用
收藏
页码:320 / 326
页数:7
相关论文
共 50 条