Polynomial generators of recursively enumerable languages

被引:0
|
作者
Kortelainen, J [1 ]
机构
[1] Univ Oulu, Dept Informat Proc Sci, Oulu, Finland
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For each language L, let <(F)overcap >(boolean AND)(L) be the smallest intersection-closed full AFL generated by the language L. Furthermore, for each natural number k >= 2 let P-k = {a(nk) vertical bar n is an element of N}. By applying certain classical and recent results on Diophantine equations we show that L-RE = (F) over cap (boolean AND)(P-k), i.e., the family of all recursively enumerable languages coincides with the smallest intersection-closed full AFL generated by the polynomial language Pk for all k >= 2. This allows us to answer to an open problem of S. Ginsburg and J. Goldstine in [2].
引用
收藏
页码:320 / 326
页数:7
相关论文
共 50 条
  • [1] On simple generators of recursively enumerable languages
    Kortelainen, Juha
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (01) : 249 - 257
  • [2] GENERATORS OF THE RECURSIVELY-ENUMERABLE DEGREES
    AMBOSSPIES, K
    LECTURE NOTES IN MATHEMATICS, 1985, 1141 : 1 - 28
  • [3] Equality sets for recursively enumerable languages
    Halava, V
    Harju, T
    Hoogeboom, HJ
    Latteux, M
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2005, 39 (04): : 661 - 675
  • [4] RECURSIVELY ENUMERABLE LANGUAGES AND VANWIJNGAARDEN GRAMMARS
    VANLEEUWEN, J
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1977, 80 (01): : 29 - 39
  • [5] Partial Learning of Recursively Enumerable Languages
    Gao, Ziyuan
    Stephan, Frank
    Zilles, Sandra
    ALGORITHMIC LEARNING THEORY (ALT 2013), 2013, 8139 : 113 - 127
  • [6] ON CHARACTERIZATIONS OF RECURSIVELY-ENUMERABLE LANGUAGES
    LATTEUX, M
    TURAKAINEN, P
    ACTA INFORMATICA, 1990, 28 (02) : 179 - 186
  • [7] Partial learning of recursively enumerable languages
    Gao, Ziyuan
    Stephan, Frank
    Zilles, Sandra
    THEORETICAL COMPUTER SCIENCE, 2016, 620 : 15 - 32
  • [8] FLOW LANGUAGES EQUAL RECURSIVELY-ENUMERABLE LANGUAGES
    ARAKI, T
    TOKURA, N
    ACTA INFORMATICA, 1981, 15 (03) : 209 - 217
  • [9] On representing recursively enumerable languages by internal contextual languages
    Ehrenfeucht, A
    Paun, G
    Rozenberg, G
    THEORETICAL COMPUTER SCIENCE, 1998, 205 (1-2) : 61 - 83
  • [10] On characterizing recursively enumerable languages by insertion grammars
    Mutyam, M
    Krithivasan, K
    Reddy, AS
    FUNDAMENTA INFORMATICAE, 2005, 64 (1-4) : 317 - 324