Application of Computational Biology and Artificial Intelligence in Drug Design

被引:38
|
作者
Zhang, Yue [1 ,2 ,3 ]
Luo, Mengqi [1 ,4 ]
Wu, Peng [5 ]
Wu, Song [4 ]
Lee, Tzong-Yi [1 ,3 ]
Bai, Chen [1 ,3 ]
机构
[1] Chinese Univ Hong Kong, Sch Life & Hlth Sci, Sch Med, Shenzhen 518172, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China
[3] Warshel Inst Computat Biol, Shenzhen 518172, Peoples R China
[4] Shenzhen Univ, South China Hosp, Hlth Sci Ctr, Shenzhen 518116, Peoples R China
[5] Shenzhen Univ, Hlth Sci Ctr, Sch Biomed Engn, Shenzhen 518055, Peoples R China
关键词
computational biology; computer-aided drug design (CADD); artificial intelligence-aided drug design (AIDD); deep learning; MOLECULAR-DYNAMICS SIMULATIONS; PROTEIN-LIGAND BINDING; QUANTUM-MECHANICS; CHEMICAL UNIVERSE; HIGH-THROUGHPUT; MACHINE INTELLIGENCE; SCORING FUNCTION; BLIND DOCKING; FREE-ENERGY; WEB SERVER;
D O I
10.3390/ijms232113568
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Traditional drug design requires a great amount of research time and developmental expense. Booming computational approaches, including computational biology, computer-aided drug design, and artificial intelligence, have the potential to expedite the efficiency of drug discovery by minimizing the time and financial cost. In recent years, computational approaches are being widely used to improve the efficacy and effectiveness of drug discovery and pipeline, leading to the approval of plenty of new drugs for marketing. The present review emphasizes on the applications of these indispensable computational approaches in aiding target identification, lead discovery, and lead optimization. Some challenges of using these approaches for drug design are also discussed. Moreover, we propose a methodology for integrating various computational techniques into new drug discovery and design.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine
    Moingeon, Philippe
    Kuenemann, Melaine
    Guedj, Mickael
    DRUG DISCOVERY TODAY, 2022, 27 (01) : 215 - 222
  • [22] Application of Artificial Intelligence Technology in Medical Cell Biology
    Fu, Xiao
    2019 INTERNATIONAL CONFERENCE ON ROBOTS & INTELLIGENT SYSTEM (ICRIS 2019), 2019, : 401 - 404
  • [23] Application of Computational Electromagnetics Techniques and Artificial Intelligence in the Engineering
    Li, Rui
    Xu, Le
    ELECTRONICS, 2024, 13 (10)
  • [24] The application of artificial intelligence to drug sensitivity prediction
    Li, Xutong
    Wu, Xiaolong
    Wan, Xiaozhe
    Zhong, Feisheng
    Cui, Chen
    Chen, Yingjia
    Chen, Lifan
    Chen, Kaixian
    Jiang, Hualiang
    Zheng, Mingyue
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (32): : 3551 - 3561
  • [25] Computational materials design using artificial intelligence methods
    Kiselyova, NN
    Gladun, VP
    Vashchenko, ND
    JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 279 (01) : 8 - 13
  • [26] Rethinking drug design in the artificial intelligence era
    Petra Schneider
    W. Patrick Walters
    Alleyn T. Plowright
    Norman Sieroka
    Jennifer Listgarten
    Robert A. Goodnow
    Jasmin Fisher
    Johanna M. Jansen
    José S. Duca
    Thomas S. Rush
    Matthias Zentgraf
    John Edward Hill
    Elizabeth Krutoholow
    Matthias Kohler
    Jeff Blaney
    Kimito Funatsu
    Chris Luebkemann
    Gisbert Schneider
    Nature Reviews Drug Discovery, 2020, 19 : 353 - 364
  • [27] Computational design of moire assemblies aided by artificial intelligence
    Tritsaris, Georgios A.
    Carr, Stephen
    Schleder, Gabriel R.
    APPLIED PHYSICS REVIEWS, 2021, 8 (03)
  • [28] Rethinking drug design in the artificial intelligence era
    Schneider, Petra
    Walters, W. Patrick
    Plowright, Alleyn T.
    Sieroka, Norman
    Listgarten, Jennifer
    Goodnow, Robert A., Jr.
    Fisher, Jasmin
    Jansen, Johanna M.
    Duca, Jose S.
    Rush, Thomas S.
    Zentgraf, Matthias
    Hill, John Edward
    Krutoholow, Elizabeth
    Kohler, Matthias
    Blaney, Jeff
    Funatsu, Kimito
    Luebkemann, Chris
    Schneider, Gisbert
    NATURE REVIEWS DRUG DISCOVERY, 2020, 19 (05) : 353 - 364
  • [29] Design and application of rhodamine derivatives in redox biology: a roadmap of the last decade towards artificial intelligence
    Mondal, Moumita
    Das, Riyanka
    Pal, Rajeshwari
    Nag, Somrita
    Banerjee, Priyabrata
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (33) : 21626 - 21676
  • [30] Artificial Intelligence for Biology
    Hassoun, Soha
    Jefferson, Felicia
    Shi, Xinghua
    Stucky, Brian
    Wang, Jin
    Rosa, Epaminondas Jr Jr
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2022, 61 (06) : 2267 - 2275