Entropy Change in Quantum Measurements for Infinite-Dimensional Quantum Systems

被引:1
|
作者
Duan, Zhoubo [1 ]
Hou, Jinchuan [1 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
基金
美国国家科学基金会;
关键词
Infinite-dimensional systems; Quantum measurement; Entropy change; Information transfer; INFORMATION;
D O I
10.1007/s10773-018-3946-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, first, we prove the projective measurement increases the entropy in infinite-dimensional quantum systems, and discuss some useful properties for the study of entropy changes in quantum measurement. Next, we introduce a joint purification framework which keeps track of all the information transfer in a quantum measurement. Based on this joint purification which encodes the various entropies arising from the most general quantum measurement, we establish several information conservation and entropic relations in infinite-dimensional case.
引用
收藏
页码:463 / 471
页数:9
相关论文
共 50 条
  • [31] Asymptotic Decoherence in Infinite-Dimensional Quantum Systems with Quadratic Hamiltonians
    J. Kupsch
    O. G. Smolyanov
    Mathematical Notes, 2003, 73 : 136 - 141
  • [32] THE CHSH-TYPE INEQUALITIES FOR INFINITE-DIMENSIONAL QUANTUM SYSTEMS
    Guo, Yu
    MODERN PHYSICS LETTERS B, 2013, 27 (21):
  • [33] Quantum control of infinite-dimensional many-body systems
    Bliss, Roger S.
    Burgarth, Daniel
    PHYSICAL REVIEW A, 2014, 89 (03)
  • [34] An entanglement criterion for states in infinite-dimensional multipartite quantum systems
    Wang YinZhu
    Hou JinChuan
    Guo Yu
    CHINESE SCIENCE BULLETIN, 2012, 57 (14): : 1643 - 1647
  • [35] Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
    V. M. Busovikov
    D. V. Zavadsky
    V. Zh. Sakbaev
    Proceedings of the Steklov Institute of Mathematics, 2021, 313 : 27 - 40
  • [36] The generalized partial transposition criterion for infinite-dimensional quantum systems
    Yan, Siqing
    Guo, Yu
    Hou, Jinchuan
    CHINESE SCIENCE BULLETIN, 2014, 59 (03): : 279 - 285
  • [37] Quantum Systems with Infinite-Dimensional Coordinate Space and the Fourier Transform
    Busovikov, V. M.
    Zavadsky, D., V
    Sakbaev, V. Zh
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 313 (01) : 27 - 40
  • [38] de Finetti Representation Theorem for Infinite-Dimensional Quantum Systems and Applications to Quantum Cryptography
    Renner, R.
    Cirac, J. I.
    PHYSICAL REVIEW LETTERS, 2009, 102 (11)
  • [39] Entropy gain and the Choi-Jamiolkowski correspondence for infinite-dimensional quantum evolutions
    Holevo, A. S.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2011, 166 (01) : 123 - 138
  • [40] Entropy gain and the Choi-Jamiolkowski correspondence for infinite-dimensional quantum evolutions
    A. S. Holevo
    Theoretical and Mathematical Physics, 2011, 166 : 123 - 138