On Semisimplicity of Jantzen Middles for the Periplectic Lie Superalgebra

被引:0
|
作者
Chen, Chih-Whi [1 ]
机构
[1] Natl Cent Univ, Dept Math, Taoyuan 320317, Taiwan
关键词
KAZHDAN-LUSZTIG CONJECTURE; ENVELOPING ALGEBRA; PRIMITIVE-IDEALS; REPRESENTATIONS; CLASSIFICATION; FUNCTORS;
D O I
10.1093/imrn/rnac01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an integral block of the category O of the periplectic Lie superalgebra contains a non-semisimple Jantzen middle if and only if it contains a simple module of atypical highest weight. As a consequence, every atypical integral block of O does not admit a Kazhdan-Lusztig theory in the sense of Cline, Parshall, and Scott.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] First space cohomology of the orthosymplectic Lie superalgebra osp(3|2) in the Lie superalgebra of superpseudodifferential operators
    Agrebaoui, Boujemaa
    Basdouri, Imed
    Elghomdi, Nabila
    Hammami, Sarra
    [J]. JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2016, 7 (02) : 141 - 155
  • [32] Second Cohomology of the Modular Lie Superalgebra Ω
    Xu, Xiaoning
    Li, Xiaojun
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (05): : 787 - 799
  • [33] A COMBINATORIAL PRESENTATION OF THE FREE LIE SUPERALGEBRA
    MELANCON, G
    REUTENAUER, C
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (12): : 1215 - 1220
  • [34] Extensions of the Neveu–Schwarz Lie Superalgebra
    Patrick Marcel
    [J]. Communications in Mathematical Physics, 1999, 207 : 291 - 306
  • [35] On the Intersection of Maximal Subalgebras in a Lie Superalgebra
    Chen, Liangyun
    Meng, Daoji
    [J]. ALGEBRA COLLOQUIUM, 2009, 16 (03) : 503 - 516
  • [36] A Matrix Lie Superalgebra and Its Applications
    Han, Jingwei
    Yu, Jing
    He, Jingsong
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2013, 2013
  • [37] Candidate for the crystalB(-∞) for the queer Lie superalgebra
    Salisbury, Ben
    Scrimshaw, Travis
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2022, 62 (02) : 377 - 401
  • [38] Quantum Berezinian for a strange Lie superalgebra
    Nazarov, Maxim
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (08)
  • [39] SEMISIMPLICITY OF 2-GRADED LIE-ALGEBRAS
    HOCHSCHILD, G
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 1976, 20 (01) : 107 - 123
  • [40] On representations of the Lie superalgebra p(n)
    Serganova, V
    [J]. JOURNAL OF ALGEBRA, 2002, 258 (02) : 615 - 630