The new insight into extracellular NAD+ degradation-the contribution of CD38 and CD73 in calcific aortic valve disease

被引:6
|
作者
Jablonska, Patrycja [1 ]
Kutryb-Zajac, Barbara [1 ]
Mierzejewska, Paulina [1 ]
Jasztal, Agnieszka [2 ]
Bocian, Barbara [3 ]
Lango, Romuald [4 ]
Rogowski, Jan [3 ]
Chlopicki, Stefan [2 ]
Smolenski, Ryszard T. [1 ]
Slominska, Ewa M. [1 ]
机构
[1] Med Univ Gdansk, Dept Biochem, Debinki 1, PL-80211 Gdansk, Poland
[2] Jagiellonian Univ, Jagiellonian Ctr Expt Therapeut, Krakow, Poland
[3] Med Univ Gdansk, Dept Cardiac & Vasc Surg, Gdansk, Poland
[4] Med Univ Gdansk, Dept Cardiac Anaesthesiol, Gdansk, Poland
关键词
aortic valve; calcific aortic valve disease; ecto-enzymes; mononucleotide nicotinamide; NAD; NICOTINAMIDE ADENINE-DINUCLEOTIDE; INTRACELLULAR CA2+; ANGIOTENSIN-II; METABOLISM; ACTIVATION; RECEPTOR; MUSCLE; BIOSYNTHESIS; MACROPHAGES; EXPRESSION;
D O I
10.1111/jcmm.15912
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Nicotinamide adenine dinucleotide (NAD(+)) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD(+) and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5 '-nucleotidase knockout mice (CD73-/-). Human non-stenotic valves (n = 10) actively converted NAD(+) and NMN via both CD73 and NAD(+)-glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD(+) was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD(+) (0.81 +/- 0.07 vs 0.56 +/- 0.10) and NMN (1.12 +/- 0.10 vs 0.71 +/- 0.08 nmol/min/cm(2)) compared with controls. CD38 was also primarily engaged in human vascular NAD(+) metabolism. Studies using specific ecto-enzyme inhibitors and CD73-/- mice confirmed that CD73 is not the only enzyme involved in NAD(+) and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD(+) and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.
引用
收藏
页码:5884 / 5898
页数:15
相关论文
共 13 条
  • [1] CD38 is methylated in prostate cancer and regulates extracellular NAD+
    Jack Mottahedeh
    Michael C. Haffner
    Tristan R. Grogan
    Takao Hashimoto
    Preston D. Crowell
    Himisha Beltran
    Andrea Sboner
    Rohan Bareja
    David Esopi
    William B. Isaacs
    Srinivasan Yegnasubramanian
    Matthew B. Rettig
    David A. Elashoff
    Elizabeth A. Platz
    Angelo M. De Marzo
    Michael A. Teitell
    Andrew S. Goldstein
    Cancer & Metabolism, 6
  • [2] CD38 is methylated in prostate cancer and regulates extracellular NAD+
    Mottahedeh, Jack
    Haffner, Michael C.
    Grogan, Tristan R.
    Hashimoto, Takao
    Crowell, Preston D.
    Beltran, Himisha
    Sboner, Andrea
    Bareja, Rohan
    Esopi, David
    Isaacs, William B.
    Yegnasubramanian, Srinivasan
    Rettig, Matthew B.
    Elashoff, David A.
    Platz, Elizabeth A.
    De Marzo, Angelo M.
    Teitell, Michael A.
    Goldstein, Andrew S.
    CANCER & METABOLISM, 2018, 6
  • [3] The CD39/CD73/Adenosine and NAD/CD38/CD203a/CD73 Axis in Cutaneous T-Cell Lymphomas
    Lin, Liyun
    Roccuzzo, Gabriele
    Yakymiv, Yuliya
    Marchisio, Sara
    Ortolan, Erika
    Funaro, Ada
    Senetta, Rebecca
    Pala, Valentina
    Bagot, Martine
    de Masson, Adele
    Battistella, Maxime
    Guenova, Emmanuella
    Ribero, Simone
    Quaglino, Pietro
    CELLS, 2025, 14 (04)
  • [4] Identification of a murine monoclonal antibody specific for human CD73 and inhibiting extracellular adenosine production generated by the CD38/CD203a/CD73 ectoenzymatic pathway
    Chillemi, Antonella
    Horenstein, Alberto L.
    Quarona, Valeria
    Morandi, Fabio
    Zaccarello, Gianluca
    Zito, Andrea
    Mariani, Valentina
    Pistoia, Vito
    Malavasi, Fabio
    PURINERGIC SIGNALLING, 2014, 10 (04) : 825 - 826
  • [5] Extracellular NAD+ enhances PARP-dependent DNA repair capacity independently of CD73 activity
    Wilk, Anna
    Hayat, Faisal
    Cunningham, Richard
    Li, Jianfeng
    Garavaglia, Silvia
    Zamani, Leila
    Ferraris, Davide M.
    Sykora, Peter
    Andrews, Joel
    Clark, Jennifer
    Davis, Amanda
    Chaloin, Laurent
    Rizzi, Menico
    Migaud, Marie
    Sobol, Robert W.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Extracellular NAD+ enhances PARP-dependent DNA repair capacity independently of CD73 activity
    Anna Wilk
    Faisal Hayat
    Richard Cunningham
    Jianfeng Li
    Silvia Garavaglia
    Leila Zamani
    Davide M. Ferraris
    Peter Sykora
    Joel Andrews
    Jennifer Clark
    Amanda Davis
    Laurent Chaloin
    Menico Rizzi
    Marie Migaud
    Robert W. Sobol
    Scientific Reports, 10
  • [7] Mechanism of CD38 via NAD+ in the Development of Non-alcoholic Fatty Liver Disease
    Dong, Min
    Wang, Shuo
    Pei, Zuowei
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2023, 20 (02): : 262 - 266
  • [8] CD38 and extracellular NAD+ regulate the development and maintenance of Hp vaccine-induced CD4+ TRM in the gastric epithelium
    Tong, Jinzhe
    Chen, Simiao
    Gu, Xinyue
    Zhang, Xuanqi
    Wei, Fang
    Xing, Yingying
    MUCOSAL IMMUNOLOGY, 2024, 17 (05) : 990 - 1004
  • [9] CD73 Protein as a Source of Extracellular Precursors for Sustained NAD+ Biosynthesis in FK866-treated Tumor Cells
    Grozio, Alessia
    Sociali, Giovanna
    Sturla, Laura
    Caffa, Irene
    Soncini, Debora
    Salis, Annalisa
    Raffaelli, Nadia
    De Flora, Antonio
    Nencioni, Alessio
    Bruzzone, Santina
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (36) : 25938 - 25949
  • [10] CD73 Rather Than CD39 Is Mainly Involved in Controlling Purinergic Signaling in Calcified Aortic Valve Disease
    Kudryavtsev, Igor
    Serebriakova, Maria
    Zhiduleva, Ekaterina
    Murtazalieva, Patimat
    Titov, Vladislav
    Malashicheva, Anna
    Shishkova, Anastasya
    Semenova, Daria
    Irtyuga, Olga
    Isakov, Dmitry
    Mitrofanova, Lubov
    Moiseeva, Olga
    Golovkin, Alexey
    FRONTIERS IN GENETICS, 2019, 10