A machine-learning approach for classifying defects on tree trunks using terrestrial LiDAR

被引:16
|
作者
Van-Tho Nguyen [1 ]
Constant, Thiery [1 ]
Kerautret, Bertrand [2 ]
Debled-Rennesson, Isabelle [3 ]
Colin, Francis [1 ]
机构
[1] Univ Lorraine, Silva, INRA, AgroParisTech, F-54000 Nancy, France
[2] Univ Lyon, LIRIS, Lyon 2, F-69676 Lyon, France
[3] Univ Lorraine, LORIA, UMR CNRS 7503, F-54506 Vandoeuvre Les Nancy, France
关键词
Roundwood quality; Random forests; Standing tree grading; SCOTS PINE; STANDING TREES; CT IMAGES; WOOD; CLASSIFICATION; ATTRIBUTES; QUALITY; BIOMASS; METRICS; SYSTEM;
D O I
10.1016/j.compag.2020.105332
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Three-dimensional data are increasingly prevalent in forestry thanks to terrestrial LiDAR. This work assesses the feasibility for an automated recognition of the type of local defects present on the bark surface. These singularities are frequently external markers of inner defects affecting wood quality, and their type, size, and frequency are major components of grading rules. The proposed approach assigns previously detected abnormalities in the bark roughness to one of the defect types: branches, branch scars, epicormic shoots, burls, and smaller defects. Our machine learning approach is based on random forests using potential defects shape descriptors, including Hu invariant moments, dimensions, and species. The results of our experiments involving different French commercial species, oak, beech, fir, and pine showed that most defects were well classified with an average F-1 score of 0.86.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
    Cubuk, E. D.
    Schoenholz, S. S.
    Rieser, J. M.
    Malone, B. D.
    Rottler, J.
    Durian, D. J.
    Kaxiras, E.
    Liu, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [22] Classifying binary black holes from Population III stars with the Einstein Telescope: A machine-learning approach
    Gran Sasso Science Institute , L'Aquila
    67100, Italy
    不详
    67100, Italy
    不详
    1211, Switzerland
    不详
    1211, Switzerland
    不详
    35122, Italy
    不详
    35131, Italy
    不详
    69120, Germany
    不详
    20126, Italy
    不详
    20126, Italy
    不详
    B15 2TT, United Kingdom
    不详
    不详
    不详
    [J]. Astron. Astrophys, 2024,
  • [23] New approach of classifying venous congestion in critically ill patients based on unsupervised machine-learning technique
    Wong, Adrian
    Mallat, Jihad
    Fischer, Marc-Olivier
    [J]. ANAESTHESIA CRITICAL CARE & PAIN MEDICINE, 2024, 43 (03)
  • [24] Canopy classification using LiDAR: a generalizable machine learning approach
    Jones, R. Sky
    Elkadiri, Racha
    Momm, Henrique
    [J]. MODELING EARTH SYSTEMS AND ENVIRONMENT, 2023, 9 (02) : 2371 - 2384
  • [25] Canopy classification using LiDAR: a generalizable machine learning approach
    R. Sky Jones
    Racha Elkadiri
    Henrique Momm
    [J]. Modeling Earth Systems and Environment, 2023, 9 : 2371 - 2384
  • [26] Machine-learning Love: classifying the equation of state of neutron stars with transformers
    Goncalves, Goncalo
    Ferreira, Marcio
    Aveiro, Joao
    Onofre, Antonio
    Freitas, Felipe F.
    Providencia, Constanca
    Font, Jose A.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2023, (12):
  • [27] A MACHINE LEARNING APPROACH FOR CLASSIFYING FAULTS IN MICROGRIDS USING WAVELET DECOMPOSITION
    Khalaf, Aya
    Al Hassan, Hashim A.
    Emes, Adam
    Akcakaya, Murat
    Grainger, Brandon M.
    [J]. 2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,
  • [28] Predicting the chemical reactivity of organic materials using a machine-learning approach
    Lee, Byungju
    Yoo, Jaekyun
    Kang, Kisuk
    [J]. CHEMICAL SCIENCE, 2020, 11 (30) : 7813 - 7822
  • [29] Detection of Colchicum autumnale in drone images, using a machine-learning approach
    Lukas Petrich
    Georg Lohrmann
    Matthias Neumann
    Fabio Martin
    Andreas Frey
    Albert Stoll
    Volker Schmidt
    [J]. Precision Agriculture, 2020, 21 : 1291 - 1303
  • [30] A generalizable machine learning framework for classifying DNA repair defects using ctDNA exomes
    Elie J. Ritch
    Cameron Herberts
    Evan W. Warner
    Sarah W. S. Ng
    Edmond M. Kwan
    Jack V. W. Bacon
    Cecily Q. Bernales
    Elena Schönlau
    Nicolette M. Fonseca
    Veda N. Giri
    Corinne Maurice-Dror
    Gillian Vandekerkhove
    Steven J. M. Jones
    Kim N. Chi
    Alexander W. Wyatt
    [J]. npj Precision Oncology, 7