Nonlinear ? model for disordered systems with intrinsic spin-orbit coupling

被引:4
|
作者
Virtanen, P. [1 ,2 ]
Bergeret, F. S. [3 ,4 ,5 ]
Tokatly, I., V [4 ,6 ,7 ,8 ]
机构
[1] Univ Jyvaskyla, Dept Phys, POB 35 YFL, FI-40014 Jyvaskyla, Finland
[2] Univ Jyvaskyla, Nanosci Ctr, POB 35 YFL, FI-40014 Jyvaskyla, Finland
[3] Univ Basque Country, CSIC, Ctr Fis Mat CFM MPC, Ctr Mixto, E-20018 Donostia San Sebastian, Spain
[4] Donostia Int Phys Ctr DIPC, Donostia San Sebastian 20018, Spain
[5] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[6] Univ Basque Country, UPV EHU, Nanobio Spect Grp, Dept Polimeros & Mat Avanzados Fis Quim & Tecnol, Donostia San Sebastian 20018, Spain
[7] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
[8] ITMO Univ, Dept Phys & Engn, St Petersburg 197101, Russia
基金
芬兰科学院;
关键词
SIGMA-MODEL; LOCALIZATION; TRANSPORT; FIELD; SUPERCONDUCTORS; SYMMETRY; EQUATION;
D O I
10.1103/PhysRevB.105.224517
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We derive the nonlinear ?? model to describe diffusive transport in normal metals and superconductors with intrinsic spin-orbit coupling (SOC). The SOC is described via an SU(2) gauge field, and we expand the model to the fourth order in gradients to find the leading non-Abelian field-strength contribution. This contribution generates the spin-charge coupling that is responsible for the spin-Hall effect. We discuss how its symmetry differs from the leading quasiclassical higher-order gradient terms. We also derive the corresponding Usadel equation describing the diffusive spin-charge dynamics in superconducting systems. As an example, we apply the obtained equations to describe the anomalous supercurrent in dirty Rashba superconductors at arbitrary temperatures.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Transverse electron focusing in systems with spin-orbit coupling
    Usaj, G
    Balseiro, CA
    PHYSICAL REVIEW B, 2004, 70 (04) : 041301 - 1
  • [32] Spin-orbit coupling in low-symmetry systems
    Boyle, L. L.
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [33] Spin-orbit coupling rule in bound fermion systems
    Ebran, J-P
    Khan, E.
    Mutschler, A.
    Vretenar, D.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2016, 43 (08)
  • [34] Topological force and torque in spin-orbit coupling systems
    Huang, F. J.
    Qi, R.
    Li, Y. D.
    Liu, W. M.
    EPL, 2007, 79 (01)
  • [35] Propagator for quantum systems involving spin-orbit coupling
    Moshinsky, M.
    Sadurni, E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (22): : 7039 - 7050
  • [36] Efficient spin filtering in a disordered semiconductor superlattice in the presence of Dresselhaus spin-orbit coupling
    Mahani, Mohammad Reza Khayatzadeh
    Faizabadi, Edris
    PHYSICS LETTERS A, 2008, 372 (11) : 1926 - 1929
  • [37] Nontrivial effect of spin-orbit coupling on the intrinsic resistivity of ferromagnetic gadolinium
    Zhu, Mingfeng
    Yao, Haibo
    Jiang, Liwei
    Zheng, Yisong
    PHYSICAL REVIEW B, 2023, 107 (11)
  • [38] Intervalley coherence and intrinsic spin-orbit coupling in rhombohedral trilayer graphene
    Arp, Trevor
    Sheekey, Owen
    Zhou, Haoxin
    Tschirhart, C. L.
    Patterson, Caitlin L.
    Yoo, H. M.
    Holleis, Ludwig
    Redekop, Evgeny
    Babikyan, Grigory
    Xie, Tian
    Xiao, Jiewen
    Vituri, Yaar
    Holder, Tobias
    Taniguchi, Takashi
    Watanabe, Kenji
    Huber, Martin E.
    Berg, Erez
    Young, Andrea F.
    NATURE PHYSICS, 2024, : 1413 - 1420
  • [39] Interfacial spin-orbit torque without bulk spin-orbit coupling
    Emori, Satoru
    Nan, Tianxiang
    Belkessam, Amine M.
    Wang, Xinjun
    Matyushov, Alexei D.
    Babroski, Christopher J.
    Gao, Yuan
    Lin, Hwaider
    Sun, Nian X.
    PHYSICAL REVIEW B, 2016, 93 (18)
  • [40] SPIN-ORBIT COUPLING IN AZINES
    GOODMAN, L
    KRISHNA, VG
    REVIEWS OF MODERN PHYSICS, 1963, 35 (03) : 541 - &