Adaptive Metric Learning for People Re-Identification

被引:3
|
作者
Zhang, Guanwen [1 ]
Kato, Jien [1 ]
Wang, Yu [1 ]
Mase, Kenji [1 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Nagoya, Aichi 4648601, Japan
关键词
multiple-shot people re-identification; adaptive metric learning; local distance comparison;
D O I
10.1587/transinf.2013EDP7451
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There exist two intrinsic issues in multiple-shot person re-identification: (1) large differences in camera view, illumination, and non-rigid deformation of posture that make the intra-class variance even larger than the inter-class variance; (2) only a few training data that are available for learning tasks in a realistic re-identification scenario. In our previous work, we proposed a local distance comparison framework to deal with the first issue. In this paper, to deal with the second issue (i.e., to derive a reliable distance metric from limited training data), we propose an adaptive learning method to learn an adaptive distance metric, which integrates prior knowledge learned from a large existing auxiliary dataset and task-specific information extracted from a much smaller training dataset. Experimental results on several public benchmark datasets show that combined with the local distance comparison framework, our adaptive learning method is superior to conventional approaches.
引用
收藏
页码:2888 / 2902
页数:15
相关论文
共 50 条
  • [21] Deep features for person re-identification on metric learning
    Wu, Wanyin
    Tao, Dapeng
    Li, Hao
    Yang, Zhao
    Cheng, Jun
    PATTERN RECOGNITION, 2021, 110
  • [22] Regularized Bayesian Metric Learning for Person Re-identification
    Liong, Venice Erin
    Lu, Jiwen
    Ge, Yongxin
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT III, 2015, 8927 : 209 - 224
  • [23] Deep Cosine Metric Learning for Person Re-Identification
    Wojke, Nicolai
    Bewley, Alex
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 748 - 756
  • [24] Learning to rank in person re-identification with metric ensembles
    Paisitkriangkrai, Sakrapee
    Shen, Chunhua
    van den Hengel, Anton
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1846 - 1855
  • [25] Weighted Local Metric Learning for Person Re-identification
    Gu, Xinqian
    Ge, Yongxin
    BIOMETRIC RECOGNITION, 2016, 9967 : 686 - 694
  • [26] Discriminative Regularized Metric Learning for Person Re-Identification
    Liong, Venice Erin
    Ge, Yongxin
    Lu, Jiwen
    2015 INTERNATIONAL CONFERENCE ON BIOMETRICS (ICB), 2015, : 52 - 57
  • [27] Adaptive Multi-Metric Fusion for Person Re-identification
    Li, Penglin
    Liu, Mengxue
    Gu, Yun
    Yao, Lixiu
    Yang, Jie
    PATTERN RECOGNITION (CCPR 2016), PT I, 2016, 662 : 258 - 267
  • [28] Deep Metric Learning for Person Re-Identification and De-Identification
    Filkovic, Ivan
    Kalafatic, Zoran
    Hrkac, Tomislav
    2016 39TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2016, : 1360 - 1364
  • [29] Structured learning of metric ensembles with application to person re-identification
    Paisitkriangkrai, Sakrapee
    Wu, Lin
    Shen, Chunhua
    van den Hengel, Anton
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2017, 156 : 51 - 65
  • [30] MULTI-KERNEL METRIC LEARNING FOR PERSON RE-IDENTIFICATION
    Syed, Muhammad Adnan
    Jiao, Jianbin
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 784 - 788