Multi-scale Deformable Deblurring Kernel Prediction for Dynamic Scene Deblurring

被引:0
|
作者
Zhu, Kai [1 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China
来源
关键词
Dynamic scene deblurring; Deformable convolution; Dynamic convolution;
D O I
10.1007/978-3-030-87361-5_21
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deblurring aims to restore clear images from blurred ones. Recently deep learning are widely used. Previous methods regard deblurring as dense prediction problems and rarely consider the inverse operation of blur. In this paper, we propose a multi-scale deformable deblurring kernel prediction network for dynamic scene deblurring which uses a coarse-to-fine method to predict the per-pixel deformable deblurring kernel and uses the fusion weight to integrate the latent images in different scales. Since the spatially variable blur scatters pixel information to surrounding sub-pixels and leads to the spatially and quantitively uneven distribution of latent pixel information, the per-pixel deformable deblurring kernel can adaptively select the sub-pixels and linearly combine them into the clean pixel for information aggregation. The multi-scale architecture helps the deformable deblurring kernel enlarge the reception field. The residual image is added to convolution result in each scale to supply refined edges when the kernel cannot cover the areas existing latent pixel information. Besides, we add local similarity loss to constrain deformable deblurring kernel's weight and offset which boosts the deblurring performance. Qualitative and quantitative experiments show that our method can produce competitive deblurring performance.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [41] Dynamic Scene Deblurring Based on Semantic Information Supplement
    Liu, Yiming
    Li, Junhui
    Huang, Wenzhuo
    Tang, Kang
    Xu, Dahong
    2020 4TH INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2020), 2020, 1518
  • [42] Deep Reference-based Dynamic Scene Deblurring
    Liu, Cunzhe
    Hua, Zhen
    Li, Jinjiang
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (03): : 653 - 669
  • [43] Progressive edge-sensing dynamic scene deblurring
    Tianlin Zhang
    Jinjiang Li
    Hui Fan
    Computational Visual Media, 2022, 8 : 495 - 508
  • [44] Progressive edge-sensing dynamic scene deblurring
    Zhang, Tianlin
    Li, Jinjiang
    Fan, Hui
    COMPUTATIONAL VISUAL MEDIA, 2022, 8 (03) : 495 - 508
  • [45] Deep Dynamic Scene Deblurring From Optical Flow
    Zhang, Jiawei
    Pan, Jinshan
    Wang, Daoye
    Zhou, Shangchen
    Wei, Xing
    Zhao, Furong
    Liu, Jianbo
    Ren, Jimmy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8250 - 8260
  • [46] Deblurring Cataract Surgery Videos Using a Multi-Scale Deconvolutional Neural Network
    Ghamsarian, Negin
    Taschwer, Mario
    Schoeffmann, Klaus
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 872 - 876
  • [47] Multi-scale network for single image deblurring based on ensemble learning module
    Wu W.
    Pan Y.
    Su N.
    Wang J.
    Wu S.
    Xu Z.
    Yu Y.
    Liu Y.
    Multimedia Tools and Applications, 2025, 84 (11) : 9045 - 9064
  • [48] Multi-scale Residual Low-Pass Filter Network for Image Deblurring
    Dong, Jiangxin
    Pan, Jinshan
    Yang, Zhongbao
    Tang, Jinhui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12311 - 12320
  • [49] MFC-Net: Multi-scale fusion coding network for Image Deblurring
    Xia, Haiying
    Wu, Bo
    Tan, Yumei
    Tang, Xiaohu
    Song, Shuxiang
    APPLIED INTELLIGENCE, 2022, 52 (11) : 13232 - 13249
  • [50] Multi-Scale Image Blind Deblurring Based on Salient Intensity and a priori Gradient
    Chenchen
    Xu Jinxin
    Wei Caihua
    Li Qingwu
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (04)