Multi-scale Deformable Deblurring Kernel Prediction for Dynamic Scene Deblurring

被引:0
|
作者
Zhu, Kai [1 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China
来源
关键词
Dynamic scene deblurring; Deformable convolution; Dynamic convolution;
D O I
10.1007/978-3-030-87361-5_21
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Deblurring aims to restore clear images from blurred ones. Recently deep learning are widely used. Previous methods regard deblurring as dense prediction problems and rarely consider the inverse operation of blur. In this paper, we propose a multi-scale deformable deblurring kernel prediction network for dynamic scene deblurring which uses a coarse-to-fine method to predict the per-pixel deformable deblurring kernel and uses the fusion weight to integrate the latent images in different scales. Since the spatially variable blur scatters pixel information to surrounding sub-pixels and leads to the spatially and quantitively uneven distribution of latent pixel information, the per-pixel deformable deblurring kernel can adaptively select the sub-pixels and linearly combine them into the clean pixel for information aggregation. The multi-scale architecture helps the deformable deblurring kernel enlarge the reception field. The residual image is added to convolution result in each scale to supply refined edges when the kernel cannot cover the areas existing latent pixel information. Besides, we add local similarity loss to constrain deformable deblurring kernel's weight and offset which boosts the deblurring performance. Qualitative and quantitative experiments show that our method can produce competitive deblurring performance.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 50 条
  • [1] Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring
    Nah, Seungjun
    Kim, Tae Hyun
    Lee, Kyoung Mu
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 257 - 265
  • [2] Dynamic Scene Deblurring
    Kim, Tae Hyun
    Ahn, Byeongjoo
    Lee, Kyoung Mu
    2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 3160 - 3167
  • [3] Multi-scale Image Blind Deblurring Network for Dynamic Scenes
    Tang S.
    Wan S.-D.
    Xie X.-Z.
    Yang S.-L.
    Huang R.
    Gu J.
    Zheng W.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (09):
  • [4] Deformable multi-scale fusion network for non-uniform single image deblurring
    Zhang, Zhizhou
    Chen, Yang
    Zhu, Aichun
    Liu, Hanxi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (29) : 45621 - 45638
  • [5] Deformable multi-scale fusion network for non-uniform single image deblurring
    Zhizhou Zhang
    Yang Chen
    Aichun Zhu
    Hanxi Liu
    Multimedia Tools and Applications, 2023, 82 : 45621 - 45638
  • [6] Multi-scale progressive blind face deblurring
    Zhang, Hao
    Shi, Canghong
    Zhang, Xian
    Wu, Linfeng
    Li, Xiaojie
    Peng, Jing
    Wu, Xi
    Lv, Jiancheng
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1439 - 1453
  • [7] Multi-scale Deblurring with Smooth Region Constraints
    Duan, Jiangyong
    Meng, Gaofeng
    Xiang, Shiming
    Pan, Chunhong
    2013 SECOND IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR 2013), 2013, : 581 - 585
  • [8] Multi-scale progressive blind face deblurring
    Hao Zhang
    Canghong Shi
    Xian Zhang
    Linfeng Wu
    Xiaojie Li
    Jing Peng
    Xi Wu
    Jiancheng Lv
    Complex & Intelligent Systems, 2023, 9 : 1439 - 1453
  • [9] Iterative multi-scale residual network for deblurring
    Zhang, Tianlin
    Li, Jinjiang
    Hua, Zhen
    IET IMAGE PROCESSING, 2021, 15 (08) : 1583 - 1595
  • [10] Attention-adaptive and deformable convolutional modules for dynamic scene deblurring
    Chen, Lei
    Sun, Quansen
    Wang, Fanhai
    INFORMATION SCIENCES, 2021, 546 : 368 - 377