Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

被引:3
|
作者
Dohare, Rajeev K. [1 ]
Agarwal, Vishal [1 ]
Choudhary, Naresh K. [1 ]
Imdad, Sameer [1 ]
Singh, Kailash [1 ]
Agarwal, Madhu [1 ]
机构
[1] Malaviya Natl Inst Technol, Dept Chem Engn, Jaipur 302017, Rajasthan, India
来源
MEMBRANE AND WATER TREATMENT | 2022年 / 13卷 / 04期
关键词
D2EHPA; emulsion liquid membrane; metal ions extraction; paraffin; span; 80; wastewater treatment; EXTRACTION; CADMIUM; PERTRACTION; LEAD;
D O I
10.12989/mwt.2022.13.4.201
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di -(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20??C. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20??C. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).
引用
收藏
页码:201 / 208
页数:8
相关论文
共 50 条
  • [21] Removal of Cd (II), Pb (II) and Cu (II) ions from aqueous solution by polyamidoamine dendrimer grafted magnetic graphene oxide nanosheets
    Peer, Fatemeh Einollahi
    Bahramifar, Nader
    Younesi, Habibollah
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 87 : 225 - 240
  • [22] Extraction of Co(II) from aqueous solution using emulsion liquid membrane
    Gasser, M. S.
    El-Hefny, N. E.
    Daoud, J. A.
    JOURNAL OF HAZARDOUS MATERIALS, 2008, 151 (2-3) : 610 - 615
  • [23] Emulsion ionic liquid membranes (EILMs) for removal of Pb(II) from aqueous solutions
    Lende, Avinash B.
    Dinker, Manish K.
    Bhosale, Vikas K.
    Kamble, Sanjay P.
    Meshram, Pawan D.
    Kulkarni, Prashant S.
    RSC ADVANCES, 2014, 4 (94) : 52316 - 52323
  • [24] Synthesis of magnetic bioadsorbent for adsorption of Zn(II), Cd(II) and Pb(II) ions from aqueous solution
    Guo, Shuangzhen
    Jiao, Pengpeng
    Dan, Zhigang
    Duan, Ning
    Zhang, Jian
    Chen, Guanyi
    Gao, Wubin
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2017, 126 : 217 - 231
  • [25] The effect of Sodium Dodecyl Sulfate on Polysulfone membrane for Pb (II) ions removal in an aqueous solution
    Ismail, Nurul Qistina
    Yusoff, Abdul Hafidz
    Shoparwe, Noor Fazliani
    Yusof, Nur Nabihah
    Noorazlan, Muhammad
    Ameram, Nadiah
    Fares, Mohammad M.
    KOMPLEKSNOE ISPOLZOVANIE MINERALNOGO SYRA, 2025, 334 (03): : 26 - 36
  • [26] Thermodynamics and Kinetics of Pb(II) and Hg(II) Ions Removal from Aqueous Solution by Romanian Clays
    Hristodor, Claudia
    Copcia, Violeta
    Lutic, Doina
    Popovici, Eveline
    REVISTA DE CHIMIE, 2010, 61 (03): : 285 - 289
  • [27] REMOVAL OF Pb(II), Cu(II) AND Cd(II) FROM AQUEOUS SOLUTION BY SOME FUNGI AND NATURAL ADSORBENTS IN SINGLE AND MULTIPLE METAL SYSTEMS
    Shoaib, Amna
    Badar, Taskeen
    Aslam, Nabila
    PAKISTAN JOURNAL OF BOTANY, 2011, 43 (06) : 2997 - 3000
  • [28] Removal of Pb(II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb(II) as imprinted ions
    Liu, Bingjie
    Lv, Xin
    Meng, Xianghong
    Yu, Guangli
    Wang, Dongfeng
    CHEMICAL ENGINEERING JOURNAL, 2013, 220 : 412 - 419
  • [29] REMOVAL OF Cd(II) IONS FROM AQUEOUS SOLUTION BY RETENTION ON PINE BARK
    Tofan, Lavinia
    Paduraru, Carmen
    Robu, Brindusa
    Miron, Anca
    Amalinei, Roxana Laura Mihailescu
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2012, 11 (01): : 199 - 205
  • [30] Biosorption of Pb(II) and Cd(II) ions from aqueous solution using polyaniline/chitin composite
    Karthik, Rathinam
    Meenakshi, Sankaran
    SEPARATION SCIENCE AND TECHNOLOGY, 2016, 51 (05) : 733 - 742