The influence of input data standardization method on prediction accuracy of artificial neural networks

被引:62
|
作者
Anysz, Hubert [1 ]
Zbiciak, Artur [1 ]
Ibadov, Nabi [1 ]
机构
[1] Warsaw Univ Technol, Fac Civil Engn, Armii Ludowej16, PL-00637 Warsaw, Poland
关键词
input data standardization; artificial neural networks ANN; building contracts completion date predicting;
D O I
10.1016/j.proeng.2016.08.081
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Achieving good results in applying artificial neural networks (ANN) in predicting requires some preparatory works on the set of data. One of them is standardization which is necessary when nonlinear activation function is applied. Basing on predicting completion period of building contracts by multi-layer ANN with error backpropagation algorithm, six different methods of input data standardization were checked in order to determine which allows to achieve the most accurate predictions. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:66 / 70
页数:5
相关论文
共 50 条
  • [41] Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data
    Manuel Barrera, Jose
    Reina, Alejandro
    Mate, Alejandro
    Carlos Trujillo, Juan
    SUSTAINABILITY, 2020, 12 (17)
  • [42] ARTIFICIAL NEURAL NETWORKS FOR THE PREDICTION OF IVF OUTCOME USING CLINICAL AND MORPHOLOGICAL DATA
    Bello, G. A.
    Rodriguez, M. G.
    Olivieri, M. T.
    Rosemberg, E. H.
    Bronfenmajer, S.
    FERTILITY AND STERILITY, 2010, 94 (04) : S250 - S250
  • [43] Artificial neural networks for the prediction of solvation energies based on experimental and computational data
    Yang, Jiyoung
    Knape, Matthias J.
    Burkert, Oliver
    Mazzini, Virginia
    Jung, Alexander
    Craig, Vincent S. J.
    Miranda-Quintana, Ramon Alain
    Bluhmki, Erich
    Smiatek, Jens
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (42) : 24359 - 24364
  • [44] Optimizing bags of artificial neural networks for the prediction of viability from sparse data
    Daly, Clyde A., Jr.
    Hernandez, Rigoberto
    JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (05):
  • [45] Photovoltaic Power Prediction Using Artificial Neural Networks and Numerical Weather Data
    Lopez Gomez, Javier
    Ogando Martinez, Ana
    Troncoso Pastoriza, Francisco
    Febrero Garrido, Lara
    Granada Alvarez, Enrique
    Orosa Garcia, Jose Antonio
    SUSTAINABILITY, 2020, 12 (24) : 1 - 19
  • [46] Prediction of fracture frequency from wireline data with the aid of artificial neural networks
    Rogers, SF
    TRANSACTIONS OF THE INSTITUTION OF MINING AND METALLURGY SECTION B-APPLIED EARTH SCIENCE, 2000, 109 : B190 - B195
  • [47] Analysis of Prediction of Pressure Data in Oil Wells Using Artificial Neural Networks
    Romero-Salcedo, M.
    Ramirez-Sabag, J.
    Lopez, H.
    Hernandez, D. A.
    Ramirez, R.
    2010 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2010), 2010, : 51 - 55
  • [48] Artificial neural networks (ANN): prediction of sensory measurements from instrumental data
    Carvalho, Naiara Barbosa
    Rodrigues Minim, Valeria Paula
    dos Santos Navarro Silva, Rita de Cassia
    Della Lucia, Suzana Maria
    Minim, Luis Aantonio
    FOOD SCIENCE AND TECHNOLOGY, 2013, 33 (04): : 722 - 729
  • [49] Prediction of Sulfur in the Hot Metal based on Data Mining and Artificial Neural Networks
    Cardoso, Wandercleiton
    di Felice, Rendo
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, TECHNOLOGY AND APPLICATIONS (DATA), 2022, : 400 - 407
  • [50] Indian stock market prediction using artificial neural networks on tick data
    Selvamuthu, Dharmaraja
    Kumar, Vineet
    Mishra, Abhishek
    FINANCIAL INNOVATION, 2019, 5 (01)