Spatial smoothing and hot spot detection for CGH data using the fused lasso

被引:244
|
作者
Tibshirani, Robert [1 ,2 ]
Wang, Pei [3 ]
机构
[1] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Biostat, Stanford, CA 94305 USA
[3] Fred Hutchinson Canc Res Ctr, Seattle, WA 98109 USA
关键词
DNA copy number; Signal detection;
D O I
10.1093/biostatistics/kxm013
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We apply the "fused lasso" regression method of Tibshirani and others (2004) to the problem of "hotspot detection", in particular, detection of regions of gain or loss in comparative genomic hybridization (CGH) data. The fused lasso criterion leads to a convex optimization problem, and we provide a fast algorithm for its solution. Estimates of false-discovery rate are also provided. Our studies show that the new method generally outperforms competing methods for calling gains and losses in CGH data.
引用
收藏
页码:18 / 29
页数:12
相关论文
共 50 条
  • [41] Using protein language models for protein interaction hot spot prediction with limited data
    Karen Sargsyan
    Carmay Lim
    BMC Bioinformatics, 25
  • [42] Using protein language models for protein interaction hot spot prediction with limited data
    Sargsyan, Karen
    Lim, Carmay
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [43] Hot spot measurements at high angular resolution using POLDER data over Australia
    Grant, IF
    Heyraud, C
    Bréon, FM
    Leroy, MM
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 594 - 596
  • [44] Intelligent hybrid system for dark spot detection using SAR data
    Genovez, Patricia
    Ebecken, Nelson
    Freitas, Corina
    Bentz, Cristina
    Freitas, Ramon
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 81 : 384 - 397
  • [45] Satellite Collision Detection using Spatial Data Structures
    Hellwig, Christian
    Czappe, Fabian
    Michelt, Martin
    Bertrandtt, Reinhold
    Wolf, Felix
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 2023, : 724 - 735
  • [46] Detection of outliers in spatial data by using local difference
    Zhang, SY
    Zhu, ZY
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 400 - 405
  • [47] Outlier detection in satellite data using spatial coherence
    Alvera-Azcarate, A.
    Sirjacobs, D.
    Barth, A.
    Beckers, J. -M.
    REMOTE SENSING OF ENVIRONMENT, 2012, 119 : 84 - 91
  • [48] Intellectual Obsolescence Detection Method of Spatial Data Using Historical Data
    Glushkov, Andrey
    Belyakov, Stanislav
    Belyakova, Marina
    2017 11TH IEEE INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT 2017), 2017, : 23 - 26
  • [49] Automated volcanic hot-spot detection based on FY-4A/AGRI infrared data
    Chu, S. S.
    Zhu, L.
    Sun, H. F.
    Li, Q. W.
    Zhang, X. R.
    Chen, T. T.
    Qiao, L.
    Zhu, W. R.
    Zhao, D. X.
    Zhang, Y. H.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (06) : 2410 - 2438
  • [50] Scalable Bayesian modelling for smoothing disease risks in large spatial data sets using INLA
    Orozco-Acosta, Erick
    Adin, Aritz
    Dolores Ugarte, Maria
    SPATIAL STATISTICS, 2021, 41