The mad2 conformational dimer: Structure and implications for the spindle assembly checkpoint

被引:198
|
作者
Mapelli, Marina
Massimiliano, Lucia
Santaguida, Stefano
Musacchio, Andrea
机构
[1] European Inst Oncol, Dept Expt Oncol, I-20139 Milan, Italy
[2] Italian Inst Technol Consortium Genom Technol Cog, Res Unit, I-20139 Milan, Italy
关键词
D O I
10.1016/j.cell.2007.08.049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The 25 kDa Mad2 protein is a key player in the spindle assembly checkpoint, a safeguard against chromosome segregation errors in mitosis. Mad2 combines three unusual properties. First, Mad2 adopts two conformations with distinct topologies, open (O) and closed (C) Mad2. Second, C-Mad2 forms topological links with its two best-characterized protein ligands, Mad1 and Cdc20. Third, O-Mad2 and C-Mad2 engage in a "conformational'' dimer that is essential for spindle checkpoint function in different organisms. The crystal structure of the O-Mad2-C-Mad2 conformational dimer, reported here, reveals an asymmetric interface that explains the selective dimerization of the O-Mad2 and C-Mad2 conformers. The structure also identifies several buried hydrophobic residues whose rearrangement correlates with the Mad2 topological change. The structure of the O-Mad2-C-Mad2 conformational dimer is consistent with a catalytic model in which a C-Mad2 template facilitates the binding of O-Mad2 to Cdc20, the target of Mad2 in the spindle checkpoint.
引用
收藏
页码:730 / 743
页数:14
相关论文
共 50 条
  • [41] The Mad2 spindle checkpoint protein has two distinct natively folded states
    Luo, XL
    Tang, ZY
    Xia, GH
    Wassmann, K
    Matsumoto, T
    Rizo, J
    Yu, HT
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2004, 11 (04) : 338 - 345
  • [42] The Mad2 spindle checkpoint protein has two distinct natively folded states
    Xuelian Luo
    Zhanyun Tang
    Guohong Xia
    Katja Wassmann
    Tomohiro Matsumoto
    Josep Rizo
    Hongtao Yu
    Nature Structural & Molecular Biology, 2004, 11 : 338 - 345
  • [43] Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2
    Martin-Lluesma, S
    Stucke, VM
    Nigg, EA
    SCIENCE, 2002, 297 (5590) : 2267 - 2270
  • [44] The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins
    Chen, RH
    Brady, DM
    Smith, D
    Murray, AW
    Hardwick, KG
    MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (08) : 2607 - 2618
  • [45] The spindle checkpoint components Mad1 and Mad2 have an essential, checkpoint-independent function in C. elegans
    Lara-Gonzalez, P.
    Moyle, M.
    Kim, T.
    Cheerambathur, D. K.
    Oegema, K.
    Desai, A.
    MOLECULAR BIOLOGY OF THE CELL, 2014, 25
  • [46] The Mad2 partial unfolding model: regulating mitosis through Mad2 conformational switching
    Skinner, John J.
    Wood, Stacey
    Shorter, James
    Englander, S. Walter
    Black, Ben E.
    JOURNAL OF CELL BIOLOGY, 2008, 183 (05): : 761 - 768
  • [47] Mad2 binding to Mad1 and Cdc20, rather than oligomerization, is required for spindle checkpoint
    Sironi, L
    Melixetian, M
    Faretta, M
    Prosperini, E
    Helin, K
    Musacchio, A
    EMBO JOURNAL, 2001, 20 (22): : 6371 - 6382
  • [48] Structural basis of spindle checkpoint activation and inactivation by Mad2 and p31comet
    Machius, Mischa
    Yang, Maojun
    Bing, Li
    Chyong-Jy, Liu
    Tomchick, Diana
    Rizo, Josep
    Yu, Hongtao
    Luo, Xuelian
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 : C79 - C79
  • [49] Spindle checkpoint proteins Mad1 and Mad2 are required for cytostatic factor-mediated metaphase arrest
    Tunquist, BJ
    Eyers, PA
    Chen, LG
    Lewellyn, AL
    Maller, JL
    JOURNAL OF CELL BIOLOGY, 2003, 163 (06): : 1231 - 1242
  • [50] Monopolar Spindle 1 (MPS1) Kinase Promotes Production of Closed MAD2 (C-MAD2) Conformer and Assembly of the Mitotic Checkpoint Complex
    Tipton, Aaron R.
    Ji, Wenbin
    Sturt-Gillespie, Brianne
    Bekier, Michael E., II
    Wang, Kexi
    Taylor, William R.
    Liu, Song-Tao
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (49) : 35149 - 35158