A kind of Hilbert Boundary Value Problem for generalized analytic functions in Clifford analysis

被引:0
|
作者
Si Zhongwei [1 ]
Wang Liang [2 ]
Zhong Xia [2 ]
Xin-Lei Feng [1 ]
Liang Lina [3 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614004, Peoples R China
[2] Weishan 1 Middle Sch, Jining 277600, Peoples R China
[3] Leshan Normal Univ, Sch Fine Arts, Leshan 614004, Peoples R China
关键词
generalized analytic function; Hilbert Boundary Value Problem; Riemann Boundary Value Problem;
D O I
10.1109/CIS.2013.172
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let R-0,R-n be the real Clifford algebra generated by e(1), e(2), ..., e(n) satisfying e(i)e(j) + e(j)e(i) = - 2 delta(ij) for i, j = 1, 2, ..., n. e(0) is the unit element. In this paper, we first give the kernel function for the generalized analytic function. Further, a kind of Hilbert Boundary Value Problem for generalized analytic functions in R-+(n+1) will be investigated and the solution is obtained.
引用
收藏
页码:788 / 792
页数:5
相关论文
共 50 条
  • [1] THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS
    司中伟
    杜金元
    [J]. Acta Mathematica Scientia, 2013, 33 (02) : 393 - 403
  • [2] THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS
    Si, Zhongwei
    Du, Jinyuan
    [J]. ACTA MATHEMATICA SCIENTIA, 2013, 33 (02) : 393 - 403
  • [3] A KIND OF RIEMANN BOUNDARY VALUE PROBLEM FOR TRIHARMONIC FUNCTIONS IN CLIFFORD ANALYSIS
    Gu, Longfei
    [J]. INTEGRAL EQUATIONS, BOUNDARY VALUE PROBLEMS AND RELATED PROBLEMS: DEDICATED TO PROFESSOR CHIEN-KE LU ON THE OCCASION OF HIS 90TH BIRTHDAY, 2013, : 49 - 58
  • [4] The Hilbert boundary value problem for Beltrami equation in Clifford analysis
    Si Zhongwei
    Liang Lina
    Ai Zhenghai
    Jiang Zhihua
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 343 - 347
  • [5] The Hilbert boundary value problem in the unit ball in Clifford analysis
    Si Zhongwei
    Liang Lina
    Du Jinyuan
    [J]. PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 128 - 131
  • [6] A Boundary Value Problem for Bihypermonogenic Functions in Clifford Analysis
    Bian, Xiaoli
    Qiao, Yuying
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [7] A boundary value problem for hypermonogenic functions in Clifford analysis
    QIAO Yuying Hebei Normal University Shijiazhuang China
    [J]. Science in China,Ser.A., 2005, Ser.A.2005(S1) (S1) - 332
  • [8] A boundary value problem for hypermonogenic functions in Clifford analysis
    QIAO Yuying Hebei Normal University
    [J]. Science China Mathematics, 2005, (S1) : 324 - 332
  • [9] A boundary value problem for hypermonogenic functions in Clifford analysis
    Yuying Qiao
    [J]. Science in China Series A: Mathematics, 2005, 48 : 324 - 332
  • [10] A boundary value problem for hypermonogenic functions in Clifford analysis
    Qiao, YY
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 324 - 332