THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS

被引:3
|
作者
Si, Zhongwei [1 ]
Du, Jinyuan [2 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614004, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Generalized analytic function; Hilbert boundary value problem; (H)over-cap(mu) function;
D O I
10.1016/S0252-9602(13)60006-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R-0,R-n be the real Clifford algebra generated by e(1), e(2), ... , e(n) satisfying e(i)e(j) + e(j)e(i) = -2 delta(ij), i, j, = 1, 2, ... ,n. e(0) is the unit element. Let Omega be an open set. A function f is called left generalized analytic in Omega if f satisfies the equation Lf = 0, where L = q(0)e(0)partial derivative(x0) + q(1)e(1)partial derivative(x1) + ... + q(n)e(n)partial derivative(xn), qi > 0, i = 0, 1, ... ,n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in R-+(n+1). will be investigated.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 50 条
  • [1] THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS
    司中伟
    杜金元
    [J]. Acta Mathematica Scientia, 2013, 33 (02) : 393 - 403
  • [2] A kind of Hilbert Boundary Value Problem for generalized analytic functions in Clifford analysis
    Si Zhongwei
    Wang Liang
    Zhong Xia
    Xin-Lei Feng
    Liang Lina
    [J]. 2013 9TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2013, : 788 - 792
  • [3] The Hilbert boundary value problem for Beltrami equation in Clifford analysis
    Si Zhongwei
    Liang Lina
    Ai Zhenghai
    Jiang Zhihua
    [J]. 2014 TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2014, : 343 - 347
  • [4] The Hilbert boundary value problem in the unit ball in Clifford analysis
    Si Zhongwei
    Liang Lina
    Du Jinyuan
    [J]. PROCEEDINGS OF THE 2012 EIGHTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2012), 2012, : 128 - 131
  • [5] A Boundary Value Problem for Bihypermonogenic Functions in Clifford Analysis
    Bian, Xiaoli
    Qiao, Yuying
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] A boundary value problem for hypermonogenic functions in Clifford analysis
    QIAO Yuying Hebei Normal University Shijiazhuang China
    [J]. Science in China,Ser.A., 2005, Ser.A.2005(S1) (S1) - 332
  • [7] A boundary value problem for hypermonogenic functions in Clifford analysis
    QIAO Yuying Hebei Normal University
    [J]. Science China Mathematics, 2005, (S1) : 324 - 332
  • [8] A boundary value problem for hypermonogenic functions in Clifford analysis
    Yuying Qiao
    [J]. Science in China Series A: Mathematics, 2005, 48 : 324 - 332
  • [9] A boundary value problem for hypermonogenic functions in Clifford analysis
    Qiao, YY
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (Suppl 1): : 324 - 332
  • [10] On the Riemann-Hilbert boundary value problem for generalized analytic functions in the framework of variable exponent spaces
    Kokilashvili, V.
    Paatashvili, V.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7267 - 7286