Thermal optimisation of metal hydride reactors for thermal energy storage applications

被引:45
|
作者
Dong, D. [1 ]
Humphries, T. D. [1 ]
Sheppard, D. A. [1 ]
Stansby, B. [1 ]
Paskevicius, M. [1 ]
Sofianos, M. V. [1 ]
Chaudhary, A. -L. [2 ]
Dornheim, M. [2 ]
Buckley, C. E. [1 ]
机构
[1] Curtin Univ, Fuels & Energy Technol Inst, Dept Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia
[2] Helmholtz Zentrum Geesthacht, Inst Mat Res, Dept Nanotechnol, Max Planck Str 1, D-21502 Geesthacht, Germany
来源
SUSTAINABLE ENERGY & FUELS | 2017年 / 1卷 / 08期
基金
澳大利亚研究理事会;
关键词
HEAT-STORAGE; CONDUCTIVITY; GRAPHITE; SYSTEMS; EXCHANGER; DESIGN; TANKS; BED;
D O I
10.1039/c7se00316a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal hydrides (MHs) are promising candidates as thermal energy storage (TES) materials for concentrated solar thermal applications. A key requirement for this technology is a high temperature heat transfer fluid (HTF) that can deliver heat to the MHs for storage during the day, and remove heat at night time to produce electricity. In this study, supercritical water was used as a HTF to heat a prototype thermochemical heat storage reactor filled with MgH2 powder during H-2 sorption, rather than electrical heating of the MH reactor. This is beneficial as the HTF flows through a coil of tubing embedded within the MH bed and is hence in better contact with the MgH2 powder. This internal heating mode produces a more uniform temperature distribution within the reactor by increasing the heat exchange surface area and reducing the characteristic heat exchange distances. Moreover, supercritical water can be implemented as a heat carrier for the entire thermal energy system within a concentrating solar thermal plant, from the receiver, through the heat storage system, and also within a conventional turbine-driven electric power generation system. Thus, the total system energy efficiency can be improved by minimising HTF heat exchangers.
引用
收藏
页码:1820 / 1829
页数:10
相关论文
共 50 条
  • [1] Tests on a metal hydride based thermal energy storage system
    Sekhar, B. Satya
    Muthukumar, P.
    Saikia, R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) : 3818 - 3824
  • [2] Fluoride substitution in sodium hydride for thermal energy storage applications
    Humphries, T. D.
    Sheppard, D. A.
    Rowles, M. R.
    Sofianos, M. V.
    Buckley, C. E.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) : 12170 - 12178
  • [3] Integration of thermal energy storage unit in a metal hydride hydrogen storage tank
    Mellouli, S.
    Abhilash, E.
    Askri, F.
    Ben Nasrallah, S.
    APPLIED THERMAL ENGINEERING, 2016, 102 : 1185 - 1196
  • [4] POROUS METAL HYDRIDE (PMH) COMPACTS FOR THERMAL ENERGY APPLICATIONS
    Lee, Michael
    Park, Il-Seok
    Kim, Sunwoo
    Kim, Kwang J.
    ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 1, 2009, : 327 - 333
  • [5] Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management
    Ye, Yang
    Zhu, Hongxing
    Cheng, Honghui
    Miao, Hong
    Ding, Jing
    Wang, Weilong
    APPLIED ENERGY, 2023, 338
  • [6] Screening of metal hydride pairs for closed thermal energy storage systems
    Aswin, N.
    Dutta, Pradip
    Murthy, S. Srinivasa
    APPLIED THERMAL ENGINEERING, 2016, 109 : 949 - 957
  • [7] High performance metal hydride based thermal energy storage systems for concentrating solar power applications
    Ward, Patrick A.
    Corgnale, Claudio
    Teprovich, Joseph A., Jr.
    Motyka, Theodore
    Hardy, Bruce
    Peters, Brent
    Zidan, Ragaiy
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 645 : S374 - S378
  • [8] Hydride-based thermal energy storage
    Adams, Marcus
    Buckley, Craig E.
    Busch, Markus
    Bunzel, Robin
    Felderhoff, Michael
    Heo, Tae Wook
    Humphries, Terry D.
    Jensen, Torben R.
    Klug, Julian
    Klug, Karl H.
    Moller, Kasper T.
    Paskevicius, Mark
    Peil, Stefan
    Peinecke, Kateryna
    Sheppard, Drew A.
    Stuart, Alastair D.
    Urbanczyk, Robert
    Wang, Fei
    Walker, Gavin S.
    Wood, Brandon C.
    Weiss, Danny
    Grant, David M.
    PROGRESS IN ENERGY, 2022, 4 (03):
  • [9] Experimental investigations on a coupled metal hydride based thermal energy storage system
    Malleswararao, K.
    Kumar, Pramod
    Dutta, Pradip
    Murthy, S. Srinivasa
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 56 : 1371 - 1383
  • [10] Performance prediction of a coupled metal hydride based thermal energy storage system
    Malleswararao, K.
    Aswin, N.
    Murthy, S. Srinivasa
    Dutta, Pradip
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (32) : 16239 - 16253