Hydride-based thermal energy storage

被引:23
|
作者
Adams, Marcus [1 ]
Buckley, Craig E. [2 ]
Busch, Markus [3 ]
Bunzel, Robin [4 ]
Felderhoff, Michael [5 ]
Heo, Tae Wook [6 ]
Humphries, Terry D. [2 ]
Jensen, Torben R. [7 ]
Klug, Julian [4 ]
Klug, Karl H. [4 ]
Moller, Kasper T. [8 ]
Paskevicius, Mark [2 ]
Peil, Stefan [9 ]
Peinecke, Kateryna [5 ]
Sheppard, Drew A. [5 ]
Stuart, Alastair D. [1 ]
Urbanczyk, Robert [9 ]
Wang, Fei [5 ]
Walker, Gavin S. [1 ]
Wood, Brandon C. [6 ]
Weiss, Danny [4 ]
Grant, David M. [1 ]
机构
[1] Univ Nottingham, Adv Mat Res Grp, Nottingham, England
[2] Curtin Univ, Phys & Astron, GPO Box U1987, Perth, WA 6845, Australia
[3] MBS GmbH, D-46514 Schermbeck, Germany
[4] Westfalische Hsch, D-45487 Gelsenkirchen, Germany
[5] Max Planck Inst Kohlenforsch, D-45470 Mulheim, Germany
[6] Lawrence Livermore Natl Lab LLNL, Lab Energy Applicat Future LEAF, Livermore, CA 94550 USA
[7] Aarhus Univ, Dept Chem, Aarhus, Denmark
[8] Aarhus Univ, Dept Biol & Chem Engn, Aarhus, Denmark
[9] Inst Energie & Umwelttechn, D-47229 Duisburg, Germany
来源
PROGRESS IN ENERGY | 2022年 / 4卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
thermal energy storage; metal hydrides; thermo-chemical energy storage; concentrated solar power; modelling; kinetics; thermal conductivity; PHASE-FIELD MODEL; HEAT-TRANSFER; METAL-HYDRIDES; MASS-TRANSFER; MOLTEN-SALT; HYDROGEN; SOLAR; TANK; PERFORMANCE; SYSTEMS;
D O I
10.1088/2516-1083/ac72ea
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The potential and research surrounding metal hydride (MH) based thermal energy storage is discussed, focusing on next generation thermo-chemical energy storage (TCES) for concentrated solar power. The site availability model to represent the reaction mechanisms of both the forward and backward MH reaction is presented, where this model is extrapolated to a small pilot scale reactor, detailing how a TCES could function/operate in a real-world setting using a conventional shell & tube reactor approach. Further, the important parameter of effective thermal conductivity is explored using an innovative multi-scale model, to providing extensive and relevant experimental data useful for reactor and system design. Promising high temperature MH material configurations may be tuned by either destabilisation, such as using additions to Ca and Sr based hydrides, or by stabilisation, such as fluorine addition to NaH, MgH2, or NaMgH3. This versatile thermodynamic tuning is discussed, including the challenges in accurately measuring the material characteristics at elevated temperatures (500 -700 degrees C). Attention to scale up is explored, including generic design and prototype considerations, and an example of a novel pilot-scale pillow-plate reactor currently in development; where materials used are discussed, overall tank design scope and system integration.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Metallic and complex hydride-based electrochemical storage of energy
    Cuevas, Fermin
    Amdisen, Mads B.
    Baricco, Marcello
    Buckley, Craig E.
    Cho, Young Whan
    de Jongh, Petra
    de Kort, Laura M.
    Grinderslev, Jakob B.
    Gulino, Valerio
    Hauback, Bjorn C.
    Heere, Michael
    Humphries, Terry
    Jensen, Torben R.
    Kim, Sangryun
    Kisu, Kazuaki
    Lee, Young-Su
    Li, Hai-Wen
    Mohtadi, Rana
    Moller, Kasper T.
    Ngene, Peter
    Noreus, Dag
    Orimo, Shin-ichi
    Paskevicius, Mark
    Polanski, Marek
    Sartori, Sabrina
    Skov, Lasse N.
    Sorby, Magnus H.
    Wood, Brandon C.
    Yartys, Volodymyr A.
    Zhu, Min
    Latroche, Michel
    PROGRESS IN ENERGY, 2022, 4 (03):
  • [2] Editorial: Metal Hydride-Based Energy Storage and Conversion Materials
    Liu, Yongfeng
    Li, Hai-Wen
    Huang, Zhenguo
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [3] Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems
    Hardy, Bruce J.
    Corgnale, Claudio
    Gamble, Stephanie N.
    SUSTAINABILITY, 2021, 13 (21)
  • [4] Experiments on a metal hydride-based hydrogen storage device
    Muthukumar, P
    Maiya, MP
    Murthy, SS
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (15) : 1569 - 1581
  • [5] Techno-economic analysis of metal hydride-based energy storage system in microgrid
    Kumar, Kuldeep
    Alam, Mohd
    Dutta, Viresh
    ENERGY STORAGE, 2019, 1 (03)
  • [6] Neutron radiography analysis of a hydride-based hydrogen storage system
    Baruj, A.
    Borzone, E. M.
    Ardito, M.
    Marin, J.
    Rivas, S.
    Roldan, F.
    Sanchez, F. A.
    Meyer, G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (47) : 16913 - 16920
  • [7] Full-cell hydride-based solid-state Li batteries for energy storage
    Latroche, Michel
    Blanchard, Didier
    Cuevas, Fermin
    El Kharbachi, Abdelouahab
    Hauback, Bjorn C.
    Jensen, Torben R.
    de Jongh, Petra E.
    Kim, Sangryun
    Nazer, Nazia S.
    Ngene, Peter
    Orimo, Shin-ichi
    Ravnsbaek, Dorthe B.
    Yartys, Volodymyr A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) : 7875 - 7887
  • [8] Acceptability envelope for metal hydride-based hydrogen storage systems
    Corgnale, Claudio
    Hardy, Bruce J.
    Tamburello, David A.
    Garrison, Stephen L.
    Anton, Donald L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) : 2812 - 2824
  • [9] Single-stage metal hydride-based heat storage system
    Bezdudny, A. V.
    Blinov, D. V.
    Dunikov, D. O.
    JOURNAL OF ENERGY STORAGE, 2023, 68
  • [10] Structural analysis of metal hydride-based hybrid hydrogen storage systems
    Corgnale, Claudio
    Hardy, Bruce J.
    Anton, Donald L.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (19) : 14223 - 14233