A local surface model applied to contact line dynamics

被引:0
|
作者
Monnier, J. [1 ]
Witomski, P. [1 ]
机构
[1] Projet IDOPT CNRS INPG INRIA UJF, Lab Modelisat & Calcul LMC IMAG, F-38041 Grenoble 9, France
关键词
Local Marangoni effect; Stokes flow; Shikhmurzaev's model; Existence-uniqueness; Slip type boundary condition;
D O I
10.1016/j.na.2005.01.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a set of equations modeling contact line dynamics. The model consists of the Navier-Stokes free surface flow with local slip-type boundary conditions and gradient surface tension coupled with a mesoscopic local surface model (nonlinear degenerated equations) describes the surface tension variations. The dynamical contact angle and the local surface tension variations are unknowns of the model. We present some mathematical and numerical results. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1551 / E1559
页数:9
相关论文
共 50 条
  • [1] Dynamics of moving contact line on a transversely patterned inclined surface
    Xia, Yuting
    Qin, Jian
    Mu, Kai
    PHYSICS OF FLUIDS, 2020, 32 (04)
  • [2] Contact line dynamics of a superhydrophobic surface: application for immersion lithography
    Arun Kumar Gnanappa
    Evangelos Gogolides
    Fabrizio Evangelista
    Michel Riepen
    Microfluidics and Nanofluidics, 2011, 10 : 1351 - 1357
  • [3] Contact line dynamics of a superhydrophobic surface: application for immersion lithography
    Gnanappa, Arun Kumar
    Gogolides, Evangelos
    Evangelista, Fabrizio
    Riepen, Michel
    MICROFLUIDICS AND NANOFLUIDICS, 2011, 10 (06) : 1351 - 1357
  • [4] On a model for the motion of a contact line on a smooth solid surface
    Billingham, J.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2006, 17 : 347 - 382
  • [5] Flow patterns in the vicinity of triple line dynamics arising from a local surface tension model
    Monnier, J.
    Cotoi, I.
    COMPUTATIONAL SCIENCE - ICCS 2006, PT 2, PROCEEDINGS, 2006, 3992 : 26 - 33
  • [6] Flow patterns in the vicinity of triple line dynamics arising from a local surface tension model
    Monnier, J.
    Benselama, A. M.
    Cotoi, I.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2007, 5 (05) : 417 - 434
  • [7] Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics
    Tartakovsky, Alexandre M.
    Panchenko, Alexander
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 305 : 1119 - 1146
  • [8] Transition in a numerical model of contact line dynamics and forced dewetting
    Afkhami, S.
    Buongiorno, J.
    Guion, A.
    Popinet, S.
    Saade, Y.
    Scardovelli, R.
    Zaleski, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 : 1061 - 1093
  • [9] Contact Angle and Local Wetting at Contact Line
    Li, Ri
    Shan, Yanguang
    LANGMUIR, 2012, 28 (44) : 15624 - 15628
  • [10] Dynamics and depinning of the triple contact line in the presence of periodic surface defects
    Nikolayev, VS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (13) : 2111 - 2119