Using the memories of multiscale machines to characterize complex systems

被引:3
|
作者
Jones, Nick S. [1 ,2 ]
机构
[1] Univ Oxford, Dept Phys, Oxford Ctr Integrat Syst Biol, Oxford OX1 3PU, England
[2] Univ Oxford, Dept Biochem, Oxford Ctr Integrat Syst Biol, Oxford OX1 3PU, England
关键词
D O I
10.1103/PhysRevLett.100.208702
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A scheme is presented to extract detailed dynamical signatures from successive measurements of complex systems. Relative entropy based time series tools are used to quantify the gain in predictive power of increasing past knowledge. By lossy compression, data is represented by increasingly coarsened symbolic strings. Each compression resolution is modeled by a machine: a finite memory transition matrix. Applying the relative entropy tools to each machine's memory exposes correlations within many time scales. Examples are given for cardiac arrhythmias and different heart conditions are distinguished.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A Review of Multiscale Science: Materials, Biology, Multiscale Data Analysis and Examples from Complex Physiological Systems
    Liang, Jiaqi
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2017, : 1360 - 1365
  • [42] Multiscale Multiobjective Systems Analysis (MiMoSA): an advanced metabolic modeling framework for complex systems
    Joseph J. Gardner
    Bri-Mathias S. Hodge
    Nanette R. Boyle
    [J]. Scientific Reports, 9
  • [43] Multiscale Multiobjective Systems Analysis (MiMoSA): an advanced metabolic modeling framework for complex systems
    Gardner, Joseph J.
    Hodge, Bri-Mathias S.
    Boyle, Nanette R.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] EQUIVALENT CIRCUITS OF SYNCHRONOUS MACHINES IN ASYNCHRONOUS CONDITIONS IN COMPLEX SYSTEMS
    TROFIMENKO, DE
    [J]. ELECTRICAL TECHNOLOGY RUSSIA, 1969, 3 : 144 - +
  • [45] scheduling framework for jobs on parallel machines in complex manufacturing systems
    Mönch, L
    [J]. WIRTSCHAFTSINFORMATIK, 2004, 46 (06): : 470 - 480
  • [46] A method for developing regulatory gene set networks to characterize complex biological systems
    Suphavilai, Chayaporn
    Zhu, Liugen
    Chen, Jake Y.
    [J]. BMC GENOMICS, 2015, 16
  • [47] A PCE-based multiscale framework for the characterization of uncertainties in complex systems
    Loujaine Mehrez
    Jacob Fish
    Venkat Aitharaju
    Will R. Rodgers
    Roger Ghanem
    [J]. Computational Mechanics, 2018, 61 : 219 - 236
  • [48] Recommender systems using support vector machines
    Min, SH
    Han, I
    [J]. WEB ENGINEERING, PROCEEDINGS, 2005, 3579 : 387 - 393
  • [49] Special Issue Multiscale Modeling and Simulation of Complex Particulate Systems Foreword
    Yang, Ning
    Ge, Wei
    Li, Jinghai
    Yu, Aibing
    [J]. PARTICUOLOGY, 2011, 9 (04) : 319 - 319
  • [50] A method for developing regulatory gene set networks to characterize complex biological systems
    Chayaporn Suphavilai
    Liugen Zhu
    Jake Y Chen
    [J]. BMC Genomics, 16