Hermitian chiral boundary states in non-Hermitian topological insulators

被引:3
|
作者
Wang, C. [1 ,2 ]
Wang, X. R. [3 ,4 ]
机构
[1] Tianjin Univ, Ctr Joint Quantum Studies, Tianjin 300350, Peoples R China
[2] Tianjin Univ, Sch Sci, Dept Phys, Tianjin 300350, Peoples R China
[3] Hong Kong Univ Sci & Technol HKUST, Phys Dept, Kowloon, Clear Water Bay, Hong Kong, Peoples R China
[4] HKUST Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
Electric insulators;
D O I
10.1103/PhysRevB.105.125103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of higher-dimensional non-Hermitian topological insulators without parity time symmetry can be Hermitian with real eigenenergies under certain conditions. Our approach allows one to construct Hermitian chiral edge and hinge states from non-Hermitian two-dimensional Chern insulators and three-dimensional second-order topological insulators, respectively. Such Hermitian chiral boundary channels have perfect transmission coefficients (quantized values) and are robust against disorders. Furthermore, a non-Hermitian topological insulator can undergo the topological Anderson insulator transition from a topologically trivial non-Hermitian metal or insulator to a topological Anderson insulator with quantized transmission coefficients at finite disorders.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Edge states and topological phases in non-Hermitian systems
    Esaki, Kenta
    Sato, Masatoshi
    Hasebe, Kazuki
    Kohmoto, Mahito
    PHYSICAL REVIEW B, 2011, 84 (20):
  • [32] Non-Hermitian chiral anomalies
    Sayyad, Sharareh
    Hannukainen, Julia D.
    Grushin, Adolfo G.
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [33] Defective edge states and anomalous bulk-boundary correspondence for topological insulators under non-Hermitian similarity transformation
    Wang, C.
    Wang, X-R
    Guo, C-X
    Kou, S-P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (09):
  • [34] Floquet second-order topological insulators in non-Hermitian systems
    Wu, Hong
    Wang, Bao-Qin
    An, Jun-Hong
    PHYSICAL REVIEW B, 2021, 103 (04)
  • [35] PT phase transitions of edge states at PT symmetric interfaces in non-Hermitian topological insulators
    Ni, Xiang
    Smirnova, Daria
    Poddubny, Alexander
    Leykam, Daniel
    Chong, Yidong
    Khanikaev, Alexander B.
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [36] Topological invariant for multiband non-Hermitian systems with chiral symmetry
    Liu, Chun -Chi
    Li, Liu-Hao
    An, Jin
    PHYSICAL REVIEW B, 2023, 107 (24)
  • [37] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [38] Topological Microlaser with a Non-Hermitian Topological Bulk
    Li Z.
    Luo X.-W.
    Lin D.
    Gharajeh A.
    Moon J.
    Hou J.
    Zhang C.
    Gu Q.
    Physical Review Letters, 2023, 131 (02)
  • [39] Topological Phases of Non-Hermitian Systems
    Gong, Zongping
    Ashida, Yuto
    Kawabata, Kohei
    Takasan, Kazuaki
    Higashikawa, Sho
    Ueda, Masahito
    PHYSICAL REVIEW X, 2018, 8 (03):
  • [40] Observation of non-Hermitian topological synchronization
    Fengxiao Di
    Weixuan Zhang
    Xiangdong Zhang
    Communications Physics, 8 (1)