Multiple imputation scheme for overcoming the missing values and variability issues in ITS data

被引:86
|
作者
Ni, DH
Leonard, JD
Guin, A
Feng, CX
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] URS Corp, Atlanta Off, Atlanta, GA USA
关键词
intelligent transportation systems; traffic capacity; data processing;
D O I
10.1061/(ASCE)0733-947X(2005)131:12(931)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic engineering studies such as validating Highway Capacity Manual (HCM) models require complete and reliable field data. However, the wealth of intelligent transportation systems (ITS) data is sometimes rendered useless for these purposes because of missing values in the data. Many imputation techniques have been developed in the past with virtually all of them imputing a single value for a missing datum. While this provides somewhat simple and fast estimates, it does not eliminate the possibility of producing biased results and it also fails to account for the uncertainty brought about by missing data. To overcome these limitations, a multiple imputation scheme is developed which provides multiple estimates for a missing value, simulating multiple draws from a population to estimate the unknown parameter. This paper also develops a framework of imputation which gives a broad perspective so that one can relate imputation methods to each other.
引用
收藏
页码:931 / 938
页数:8
相关论文
共 50 条
  • [21] Hierarchical multiple imputation of missing optical biometry values
    Grove, Nathan
    Patnaik, Jennifer
    Christopher, Karen L.
    Mandava, Naresh
    Lynch, Anne M.
    Wagner, Brandie
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [22] A new multiple imputation method for bounded missing values
    Kwon, Tae Yeon
    Park, Yousung
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 107 : 204 - 209
  • [23] Multiple imputation of missing values: New features for mim
    Royston, Patrick
    Carlin, John B.
    White, Ian R.
    [J]. STATA JOURNAL, 2009, 9 (02): : 252 - 264
  • [24] A Nonparametric Multiple Imputation Approach for Data with Missing Covariate Values with Application to Colorectal Adenoma Data
    Hsu, Chiu-Hsieh
    Long, Qi
    Li, Yisheng
    Jacobs, Elizabeth
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2014, 24 (03) : 634 - 648
  • [25] Missing Values in Longitudinal Proteome Dynamics Studies: Making a Case for Data Multiple Imputation
    Yan, Yu
    Sankar, Baradwaj Simha
    Mirza, Bilal
    Ng, Dominic C. M.
    Pelletier, Alexander R.
    Huang, Sarah D.
    Wang, Wei
    Watson, Karol
    Wang, Ding
    Ping, Peipei
    [J]. JOURNAL OF PROTEOME RESEARCH, 2024, 23 (09) : 4151 - 4162
  • [26] Treatment of missing values with imputation for the analysis of otologic data
    Laurikkala, J
    Kentala, E
    Juhola, M
    Pyykkö, I
    [J]. MEDICAL INFORMATICS EUROPE '99, 1999, 68 : 428 - 431
  • [27] REGRESSION IMPUTATION OF MISSING VALUES IN LONGITUDINAL DATA SETS
    SCHNEIDERMAN, ED
    KOWALSKI, CJ
    WILLIS, SM
    [J]. INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1993, 32 (02): : 121 - 133
  • [28] Robust imputation method for missing values in microarray data
    Yoon, Dankyu
    Lee, Eun-Kyung
    Park, Taesung
    [J]. BMC BIOINFORMATICS, 2007, 8 (Suppl 2)
  • [29] Multiple Imputation for Missing Data in Electronic Health Databases: Practical Issues and Some Solutions
    Carpenter, James
    Petersen, Irene
    Welch, Catherine
    Bartlett, Jonathan
    Walters, Kate
    Morris, Richard
    White, Ian
    Marston, Louise
    Nazareth, Irwin
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 : S163 - S163
  • [30] Robust imputation method for missing values in microarray data
    Dankyu Yoon
    Eun-Kyung Lee
    Taesung Park
    [J]. BMC Bioinformatics, 8