Optimization Improvement and Clustering Application Based on Moth-Flame Algorithm

被引:0
|
作者
Ye, Lvyang [1 ]
Huang, Huajuan [2 ]
Wei, Xiuxi [2 ]
机构
[1] Guangxi Minzu Univ, Coll Elect Informat, Nanning 530006, Peoples R China
[2] Guangxi Minzu Univ, Coll Artificial Intelligence, Nanning 530006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Moth-Flame optimization algorithm; Clustering center; K-means clustering;
D O I
10.1007/978-3-031-13832-4_63
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optimization problem is widely used in production management, military command and scientific experiments and other fields, moth-flame optimization algorithm as a new swarm intelligence optimization algorithm, has the advantages of fast convergence, simple structure, strong robustness, memory mechanism, it is also one of the focus of scholars. K-means clustering is the most famous partition clustering algorithm. Given a set of data points and the required number of clustering k, k is specified by the user, and the K-means algorithm repeatedly divides the data into K clusters according to a certain distance function. This article first on moth-flame optimization algorithm (MFO) the existence of complex or slightly larger scale function to solve the problems of slow convergence speed, put forward by the flame number greater than the number of moths reference grey wolf optimizer (GWO) comes first algorithm do rectilinear flight, later periods the scaling factor are introduced to improve moth-flame optimization algorithm, in order to realize broaden the moths search area, improve the ability of global optimization and convergence rate of the target. Through experiments to verify the feasibility of the improved Moth-flame optimization algorithm (IMFO), the convergence speed is significantly higher than MFO algorithm, and the solution accuracy is also greatly improved. Then the algorithm is used to guide the clustering center of k-means clustering algorithm to improve the clustering accuracy. The three algorithms of K-means, MFO Fusion K-means (MFO-KM) and IMFO Fusion K-means (IMFO-KM) algorithms were compared in the international standard data set Iris, Seeds and Wine Quality. The results showed that: IMFO-KM algorithm has the best performance improvement in Wine Quality data set, with the accuracy improved by 3.82%-6.37% compared with other algorithms, the class average distance G reduced by 7.18%-13.58%, and the standardized mutual information improved by 14.17%.
引用
收藏
页码:769 / 784
页数:16
相关论文
共 50 条
  • [1] Data Clustering Using Moth-Flame Optimization Algorithm
    Singh, Tribhuvan
    Saxena, Nitin
    Khurana, Manju
    Singh, Dilbag
    Abdalla, Mohamed
    Alshazly, Hammam
    [J]. SENSORS, 2021, 21 (12)
  • [2] CAMONET: Moth-Flame Optimization (MFO) Based Clustering Algorithm for VANETs
    Shah, Yasir Ali
    Habib, Hafiz Adnan
    Aadil, Farhan
    Khan, Muhammad Fahad
    Maqsood, Muazzam
    Nawaz, Tabassam
    [J]. IEEE ACCESS, 2018, 6 : 48611 - 48624
  • [3] An Ameliorated Moth-flame Optimization Algorithm
    Zhao, Xiao-dong
    Fang, Yi-ming
    Ma, Zhuang
    Xu, Miao
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 2372 - 2377
  • [4] Migration-Based Moth-Flame Optimization Algorithm
    Nadimi-Shahraki, Mohammad H.
    Fatahi, Ali
    Zamani, Hoda
    Mirjalili, Seyedali
    Abualigah, Laith
    Abd Elaziz, Mohamed
    [J]. PROCESSES, 2021, 9 (12)
  • [5] Moth-flame optimization algorithm based on diversity and mutation strategy
    Lei Ma
    Chao Wang
    Neng-gang Xie
    Miao Shi
    Ye Ye
    Lu Wang
    [J]. Applied Intelligence, 2021, 51 : 5836 - 5872
  • [6] An improved moth-flame optimization algorithm based on fusion mechanism
    Jiang, Luchao
    Hao, Kuangrong
    Tang, Xue-song
    Wang, Tong
    Liu, Xiaoyan
    [J]. IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [7] Moth-flame optimization algorithm based on diversity and mutation strategy
    Ma, Lei
    Wang, Chao
    Xie, Neng-gang
    Shi, Miao
    Ye, Ye
    Wang, Lu
    [J]. APPLIED INTELLIGENCE, 2021, 51 (08) : 5836 - 5872
  • [8] Feature Selection Approach based on Moth-Flame Optimization Algorithm
    Zawbaa, Hossam M.
    Emary, E.
    Parv, B.
    Sharawi, Marwa
    [J]. 2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 4612 - 4617
  • [9] Moth-flame optimization algorithm: variants and applications
    Shehab, Mohammad
    Abualigah, Laith
    Al Hamad, Husam
    Alabool, Hamzeh
    Alshinwan, Mohammad
    Khasawneh, Ahmad M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 9859 - 9884
  • [10] Application of Improved Moth-Flame Optimization Algorithm for Robot Path Planning
    Dai, Xuefeng
    Wei, Yang
    [J]. IEEE ACCESS, 2021, 9 : 105914 - 105925