An Ameliorated Moth-flame Optimization Algorithm

被引:0
|
作者
Zhao, Xiao-dong [1 ]
Fang, Yi-ming [1 ,2 ]
Ma, Zhuang [1 ,3 ]
Xu, Miao [1 ]
机构
[1] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao 066004, Hebei, Peoples R China
[2] Natl Engn Res Ctr Equipment & Technol Cold Strip, Qinhuangdao 066004, Hebei, Peoples R China
[3] Tangshan Univ, Tangshan 063000, Hebei, Peoples R China
关键词
Moth-flame optimization algorithm; crisscross optimization algorithm; stochastic optimization; convergence;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To improve the global search ability under the condition of ensuring convergence speed, it is still a major challenge for most meta-heuristic optimization algorithms. The Moth-Flame Optimization (MFO) algorithm is an innovative nature-inspired algorithm. To improve the precision of the solution and to quicken the convergence speed and to increase the stability of MFO, an ameliorated Moth-flame optimization algorithm (A-MFO) that combines the crisscross optimization algorithm with MFO is proposed to solve this problems that are mentioned above. The performance of proposed A-MFO is demonstrated on six benchmark mathematical function optimization problems regarding superior accuracy and lower computational time achieved compared to other well-known nature-inspired algorithms.
引用
收藏
页码:2372 / 2377
页数:6
相关论文
共 50 条
  • [1] Moth-flame optimization algorithm: variants and applications
    Shehab, Mohammad
    Abualigah, Laith
    Al Hamad, Husam
    Alabool, Hamzeh
    Alshinwan, Mohammad
    Khasawneh, Ahmad M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 9859 - 9884
  • [2] Migration-Based Moth-Flame Optimization Algorithm
    Nadimi-Shahraki, Mohammad H.
    Fatahi, Ali
    Zamani, Hoda
    Mirjalili, Seyedali
    Abualigah, Laith
    Abd Elaziz, Mohamed
    [J]. PROCESSES, 2021, 9 (12)
  • [3] Data Clustering Using Moth-Flame Optimization Algorithm
    Singh, Tribhuvan
    Saxena, Nitin
    Khurana, Manju
    Singh, Dilbag
    Abdalla, Mohamed
    Alshazly, Hammam
    [J]. SENSORS, 2021, 21 (12)
  • [4] An Improved Moth-Flame Optimization Algorithm for Engineering Problems
    Li, Yu
    Zhu, Xinya
    Liu, Jingsen
    [J]. SYMMETRY-BASEL, 2020, 12 (08):
  • [5] Chaos-enhanced moth-flame optimization algorithm for global optimization
    Li Hongwei
    Liu Jianyong
    Chen Liang
    Bai Jingbo
    Sun Yangyang
    Lu Kai
    [J]. JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2019, 30 (06) : 1144 - 1159
  • [6] Chaos-enhanced moth-flame optimization algorithm for global optimization
    LI Hongwei
    LIU Jianyong
    CHEN Liang
    BAI Jingbo
    SUN Yangyang
    LU Kai
    [J]. Journal of Systems Engineering and Electronics, 2019, 30 (06) : 1144 - 1159
  • [7] An Improved Moth-Flame Optimization algorithm with hybrid search phase
    Pelusi, Danilo
    Mascella, Raffaele
    Tallini, Luca
    Nayak, Janmenjoy
    Naik, Bighnaraj
    Deng, Yong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2020, 191
  • [8] Optimization Improvement and Clustering Application Based on Moth-Flame Algorithm
    Ye, Lvyang
    Huang, Huajuan
    Wei, Xiuxi
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, PT III, 2022, 13395 : 769 - 784
  • [9] Harmonic Elimination of Multilevel Inverters by Moth-Flame Optimization Algorithm
    Ceylan, Oguzhan
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (INDEL), 2016,
  • [10] Design of steel frames by an enhanced moth-flame optimization algorithm
    Gholizadeh, Saeed
    Davoudi, Hamed
    Fattahi, Fayegh
    [J]. STEEL AND COMPOSITE STRUCTURES, 2017, 24 (01): : 129 - 140