Exploring Neural Translation Models for Cross-Lingual Text Similarity

被引:2
|
作者
Seki, Kazuhiro [1 ]
机构
[1] Konan Univ, Kobe, Hyogo, Japan
关键词
Sequence-to-sequence models; distributed representation; cross-lingual information retrieval;
D O I
10.1145/3269206.3269262
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper explores a neural network-based approach to computing similarity of two texts written in different languages. Such similarity can be useful for a variety of applications including cross-lingual information retrieval and cross-lingual text classification. To compute similarity, we focus on neural machine translation models and examine the utility of their intermediate states. Through experiments on an English-Japanese translation corpus, it is demonstrated that the intermediate states of input texts are indeed beneficial for computing cross-lingual text similarity, outperforming other approaches including a strong machine translation-based baseline.
引用
收藏
页码:1591 / 1594
页数:4
相关论文
共 50 条
  • [21] On cross-lingual retrieval with multilingual text encoders
    Litschko, Robert
    Vulic, Ivan
    Ponzetto, Simone Paolo
    Glavas, Goran
    [J]. INFORMATION RETRIEVAL JOURNAL, 2022, 25 (02): : 149 - 183
  • [22] Neural Cross-Lingual Entity Linking
    Sil, Avirup
    Kundu, Gourab
    Florian, Radu
    Hamza, Wael
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 5464 - 5472
  • [23] Cross-Lingual Speech-to-Text Summarization
    Pontes, Elvys Linhares
    Gonzalez-Gallardo, Carlos-Emiliano
    Torres-Moreno, Juan-Manuel
    Huet, Stephane
    [J]. MULTIMEDIA AND NETWORK INFORMATION SYSTEMS, 2019, 833 : 385 - 395
  • [24] Cross-lingual Text Clustering in a Large System
    Schneider, Nicole R.
    Sankaranarayanan, Jagan
    Samet, Hanan
    [J]. PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING AND INFORMATION RETRIEVAL, NLPIR 2023, 2023, : 1 - 11
  • [25] NCLS: Neural Cross-Lingual Summarization
    Zhu, Junnan
    Wang, Qian
    Wang, Yining
    Zhou, Yu
    Zhang, Jiajun
    Wang, Shaonan
    Zong, Chengqing
    [J]. 2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 3054 - 3064
  • [26] On cross-lingual retrieval with multilingual text encoders
    Robert Litschko
    Ivan Vulić
    Simone Paolo Ponzetto
    Goran Glavaš
    [J]. Information Retrieval Journal, 2022, 25 : 149 - 183
  • [27] Cross-lingual learning for text processing: A survey
    Pikuliak, Matus
    Simko, Marian
    Bielikova, Maria
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [28] Translation Artifacts in Cross-lingual Transfer Learning
    Artetxe, Mikel
    Labaka, Gorka
    Agirre, Eneko
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7674 - 7684
  • [29] Cross-Lingual Preposition Disambiguation for Machine Translation
    Kumar, M. Anand
    Rajendran, S.
    Soman, K. P.
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 291 - 300
  • [30] Models and Datasets for Cross-Lingual Summarisation
    Perez-Beltrachini, Laura
    Lapata, Mirella
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 9408 - 9423