Real-Time Discriminative Background Subtraction

被引:60
|
作者
Cheng, Li [1 ]
Gong, Minglun [2 ]
Schuurmans, Dale [3 ]
Caelli, Terry [4 ]
机构
[1] ASTAR, Bioinformat Inst, Singapore 138671, Singapore
[2] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X5, Canada
[3] Univ Alberta, Dept Comp Sci, Edmonton, AB A6G 2E8, Canada
[4] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
关键词
Background subtraction; graphics processing units (GPUs); large-margin methods; online learning with kernels; one class support vector machine (SVM); real time foreground object segmentation from video; TRACKING; GRADIENT;
D O I
10.1109/TIP.2010.2087764
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The authors examine the problem of segmenting foreground objects in live video when background scene textures change over time. In particular, we formulate background subtraction as minimizing a penalized instantaneous risk functional-yielding a local online discriminative algorithm that can quickly adapt to temporal changes. We analyze the algorithm's convergence, discuss its robustness to nonstationarity, and provide an efficient nonlinear extension via sparse kernels. To accommodate interactions among neighboring pixels, a global algorithm is then derived that explicitly distinguishes objects versus background using maximum a posteriori inference in a Markov random field (implemented via graph-cuts). By exploiting the parallel nature of the proposed algorithms, we develop an implementation that can run efficiently on the highly parallel graphics processing unit (GPU). Empirical studies on a wide variety of datasets demonstrate that the proposed approach achieves quality that is comparable to state-of-the-art offline methods, while still being suitable for real-time video analysis (>= 75 fps on a mid-range GPU).
引用
下载
收藏
页码:1401 / 1414
页数:14
相关论文
共 50 条
  • [31] An Efficient Architecture Solution for Low-Power Real-Time Background Subtraction
    Tabkhi, Hamed
    Sabbagh, Majid
    Schirner, Gunar
    PROCEEDINGS OF THE ASAP2015 2015 IEEE 26TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS, 2015, : 218 - 225
  • [32] Real-Time Monocular Human Height Estimation Using Bimodal Background Subtraction
    Wangsiripitak, Somkiat
    Saelao, Wongsatorn
    TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 117 - 122
  • [33] A Self-adaptive CodeBook (SACB) model for real-time background subtraction
    Shah, Munir
    Deng, Jeremiah D.
    Woodford, Brendon J.
    IMAGE AND VISION COMPUTING, 2015, 38 : 52 - 64
  • [34] Dynamic real-time subtraction of stray-light and background for multiphoton imaging
    Fernandez, A.
    Straw, A.
    Distel, M.
    Leitgeb, R.
    Baltuska, A.
    Verhoef, A. J.
    BIOMEDICAL OPTICS EXPRESS, 2021, 12 (01) : 288 - 302
  • [35] A local discriminative model for background subtraction
    Ulges, Adrian
    Breuel, Thomas M.
    PATTERN RECOGNITION, 2008, 5096 : 507 - 516
  • [36] Real-time background modeling/subtraction using two-layer codebook model
    Sigari, Mohamad Hoseyn
    Fathy, Mahmood
    IMECS 2008: INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS, VOLS I AND II, 2008, : 717 - 720
  • [37] Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform
    Grzegorz Szwoch
    Damian Ellwart
    Andrzej Czyżewski
    Journal of Real-Time Image Processing, 2016, 11 : 111 - 125
  • [38] Real-time hardware background subtraction using an adjustable gain balance amplified photodetector
    Cauble, Galen D.
    Wayne, David T.
    LASER COMMUNICATION AND PROPAGATION THROUGH THE ATMOSPHERE AND OCEANS III, 2014, 9224
  • [39] Background Subtraction and Frame Difference Based Moving Object Detection for Real-Time Surveillance
    黄中文
    戚飞虎
    岑峰
    Journal of Donghua University(English Edition), 2003, (01) : 15 - 19
  • [40] Parallel implementation of background subtraction algorithms for real-time video processing on a supercomputer platform
    Szwoch, Grzegorz
    Ellwart, Damian
    Czyzewski, Andrzej
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2016, 11 (01) : 111 - 125