Ultrathin alumina-coated carbon nanotubes as an anode for high capacity Li-ion batteries

被引:56
|
作者
Lahiri, Indranil [1 ]
Oh, Seung-Min [2 ]
Hwang, Jun Y. [3 ]
Kang, Chiwon [1 ]
Choi, Mansoo [4 ]
Jeon, Hyeongtag [4 ]
Banerjee, Rajarshi [3 ]
Sun, Yang-Kook [2 ]
Choi, Wonbong [1 ,2 ]
机构
[1] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
[2] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
[3] Univ N Texas, Dept Mat Sci & Engn, Denton, TX 76203 USA
[4] Hanyang Univ, Dept Mat Sci & Engn, Seoul 133791, South Korea
关键词
ATOMIC-LAYER DEPOSITION; NATURAL GRAPHITE ANODE; ELECTROCHEMICAL LITHIATION; ELECTRODE MATERIALS; LITHIUM STORAGE; RATE CAPABILITY; DE-LITHIATION; PERFORMANCE; OXIDE; COMPOSITES;
D O I
10.1039/c1jm11474c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alumina-coated carbon nanotubes (CNTs) were synthesized on a copper substrate and have been used as an anode in Li-ion batteries. CNTs were grown directly on the copper current collector by chemical vapor deposition and an ultrathin layer of alumina was deposited on the CNTs by atomic layer deposition, thus forming the binder-free electrode for the Li-ion battery. While CNTs, which form the core of the structure, provide excellent conductivity, structural integrity and Li-ion intercalation ability, the aluminium oxide coating provides additional stability to the electrode, with further enhancement of capacity. The anode showed very high specific capacity, good capacity retention ability and excellent rate capability. This novel anode may be considered as an advanced anode for future Li-ion batteries.
引用
收藏
页码:13621 / 13626
页数:6
相关论文
共 50 条
  • [21] Hard carbon coated nano-Si/graphite composite as a high performance anode for Li-ion batteries
    Jeong, Sookyung
    Li, Xiaolin
    Zheng, Jianming
    Yan, Pengfei
    Cao, Ruiguo
    Jung, Hee Joon
    Wang, Chongmin
    Liu, Jun
    Zhang, Ji-Guang
    JOURNAL OF POWER SOURCES, 2016, 329 : 323 - 329
  • [22] Carbon/Ba-Fe-Si alloy composite as high capacity anode materials for Li-ion batteries
    Dong, H
    Ai, XP
    Yang, HX
    ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (11) : 952 - 957
  • [23] Cattail-Grass-Derived Porous Carbon as High-Capacity Anode Material for Li-Ion Batteries
    Li, Hui
    Song, Lingyue
    Huo, Dongxing
    Yang, Yu
    Zhang, Ning
    Liang, Jinglong
    MOLECULES, 2023, 28 (11):
  • [24] Porous SnS Nanorods/Carbon Hybrid Materials as Highly Stable and High Capacity Anode for Li-Ion Batteries
    Cai, Junjie
    Li, Zesheng
    Shen, Pei Kang
    ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (08) : 4093 - 4098
  • [25] Cluster-Inspired Design of High-Capacity Anode for Li-Ion Batteries
    Zhao, Tianshan
    Wang, Qian
    Jena, Puru
    ACS ENERGY LETTERS, 2016, 1 (01): : 202 - 208
  • [26] Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    Journal of Alloys and Compounds, 2006, 426 (1-2): : 277 - 280
  • [27] Rod-Like LiBC Anode with High Specific Capacity in Li-Ion Batteries
    Xu, Zhihua
    Wu, Yu
    Zheng, Yangyang
    Chen, Yucheng
    Li, De
    Ji, Wenting
    Chen, Yong
    ACS OMEGA, 2025, 10 (12): : 12636 - 12644
  • [28] Investigation on pyrolitic carbon-coated microcrystalline graphite as anode material for Li-ion batteries
    He, Yue-De
    Liu, Hong-Bo
    Hong, Quan
    Xiao, Hai-He
    Gongneng Cailiao/Journal of Functional Materials, 2013, 44 (16): : 2397 - 2400
  • [29] Si/SnSb alloy composite as high capacity anode materials for Li-ion batteries
    Guo, Hong
    Zhao, Hailei
    Yin, Chaoli
    Qiu, Weihua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2006, 426 (1-2) : 277 - 280
  • [30] Preparation of tin-oxide nanotubes as anode for Li-ion batteries
    王剑华
    张利华
    陈冬华
    郭玉忠
    TransactionsofNonferrousMetalsSocietyofChina, 2007, (S1) : 928 - 933