An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem

被引:19
|
作者
Liu, Zexian [1 ,2 ]
Liu, Hongwei [1 ]
Dong, Xiaoliang [3 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Hezhou Univ, Sch Math & Comp Sci, Hezhou, Peoples R China
[3] Beifang Univ Nationalities, Sch Math & Informat, Yinchuan, Peoples R China
基金
美国国家科学基金会;
关键词
Barzilai-Borwein (BB) method; BFGS update formula; approximating optimal stepsize; strictly convex quadratic minimization; gradient method; BARZILAI; OPTIMIZATION;
D O I
10.1080/02331934.2017.1399392
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a new type of stepsize, approximate optimal stepsize, for gradient method is introduced to interpret the Barzilai-Borwein (BB) method, and an efficient gradient method with an approximate optimal stepsize for the strictly convex quadratic minimization problem is presented. Based on a multi-step quasi-Newton condition, we construct a new quadratic approximation model to generate an approximate optimal stepsize. We then use the two well-known BB stepsizes to truncate it for improving numerical effects and treat the resulted approximate optimal stepsize as the new stepsize for gradient method. We establish the global convergence and R-linear convergence of the proposed method. Numerical results show that the proposed method outperforms some well-known gradient methods.
引用
收藏
页码:427 / 440
页数:14
相关论文
共 50 条
  • [31] Extragradient method for convex minimization problem
    Ceng, Lu-Chuan
    Liou, Yeong-Cheng
    Wen, Ching-Feng
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [32] Extragradient method for convex minimization problem
    Lu-Chuan Ceng
    Yeong-Cheng Liou
    Ching-Feng Wen
    [J]. Journal of Inequalities and Applications, 2014
  • [33] Alternating Proximal Gradient Method for Convex Minimization
    Shiqian Ma
    [J]. Journal of Scientific Computing, 2016, 68 : 546 - 572
  • [34] Alternating Proximal Gradient Method for Convex Minimization
    Ma, Shiqian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (02) : 546 - 572
  • [35] A semidefinite programming method for integer convex quadratic minimization
    Jaehyun Park
    Stephen Boyd
    [J]. Optimization Letters, 2018, 12 : 499 - 518
  • [36] A semidefinite programming method for integer convex quadratic minimization
    Park, Jaehyun
    Boyd, Stephen
    [J]. OPTIMIZATION LETTERS, 2018, 12 (03) : 499 - 518
  • [37] Convergence study on strictly contractive Peaceman–Rachford splitting method for nonseparable convex minimization models with quadratic coupling terms
    Peixuan Li
    Yuan Shen
    Suhong Jiang
    Zehua Liu
    Caihua Chen
    [J]. Computational Optimization and Applications, 2021, 78 : 87 - 124
  • [38] A STABLE AND EFFICIENT METHOD FOR SOLVING A CONVEX QUADRATIC PROGRAM WITH APPLICATION TO OPTIMAL CONTROL
    Shahzad, Amir
    Kerrigan, Eric C.
    Constantinides, George A.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2012, 22 (04) : 1369 - 1393
  • [39] Least gradient problem with respect to a non-strictly convex norm
    Gorily, Wojciech
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 200
  • [40] Empirical risk minimization is optimal for the convex aggregation problem
    Lecue, Guillaume
    [J]. BERNOULLI, 2013, 19 (5B) : 2153 - 2166