An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem

被引:19
|
作者
Liu, Zexian [1 ,2 ]
Liu, Hongwei [1 ]
Dong, Xiaoliang [3 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Hezhou Univ, Sch Math & Comp Sci, Hezhou, Peoples R China
[3] Beifang Univ Nationalities, Sch Math & Informat, Yinchuan, Peoples R China
基金
美国国家科学基金会;
关键词
Barzilai-Borwein (BB) method; BFGS update formula; approximating optimal stepsize; strictly convex quadratic minimization; gradient method; BARZILAI; OPTIMIZATION;
D O I
10.1080/02331934.2017.1399392
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, a new type of stepsize, approximate optimal stepsize, for gradient method is introduced to interpret the Barzilai-Borwein (BB) method, and an efficient gradient method with an approximate optimal stepsize for the strictly convex quadratic minimization problem is presented. Based on a multi-step quasi-Newton condition, we construct a new quadratic approximation model to generate an approximate optimal stepsize. We then use the two well-known BB stepsizes to truncate it for improving numerical effects and treat the resulted approximate optimal stepsize as the new stepsize for gradient method. We establish the global convergence and R-linear convergence of the proposed method. Numerical results show that the proposed method outperforms some well-known gradient methods.
引用
收藏
页码:427 / 440
页数:14
相关论文
共 50 条