Microstructure and Wear Resistance of Plasma-Sprayed Molybdenum Coating Reinforced by MoSi2 Particles

被引:51
|
作者
Yan, Jianhui [1 ]
He, Zheyu [1 ]
Wang, Yi [1 ]
Qiu, Jingwen [1 ]
Wang, Yueming [1 ]
机构
[1] Hunan Univ Sci & Technol, Hunan Prov Key Def Lab High Temp Wear Resisting M, Xiangtan, Peoples R China
基金
中国国家自然科学基金;
关键词
atmospheric plasma spraying; molybdenum coating; MoSi2; wear resistance; MECHANICAL-PROPERTIES; DEPOSITION; BEHAVIOR; FUEL; MO;
D O I
10.1007/s11666-016-0440-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Mo coatings with or without incorporated MoSi2 were fabricated by atmospheric plasma spraying, and their microstructure, microhardness, bond strength, and wear resistance were compared. Two kinds of spray powder, i.e., pure Mo and a blend of Mo and MoSi2, were sprayed onto low-carbon steel. Microstructural analysis of the MoSi2-Mo coating showed MoSi2 homogeneously distributed in a Mo matrix. Addition of MoSi2 particles increased the microhardness of the as-sprayed Mo coating. The adhesion strength of the Mo coating was better than that of the MoSi2-Mo coating. Wear test results showed that the wear rate and friction coefficient of the two coatings increased with increasing load, and the friction coefficient of the MoSi2-Mo coating was lower than that of the Mo coating. The MoSi2-Mo composite coating exhibited better wear resistance than the Mo coating. The wear failure mechanisms of the two coatings were local plastic deformation, delamination, oxidation, and adhesion wear.
引用
收藏
页码:1322 / 1329
页数:8
相关论文
共 50 条
  • [41] Effect of microstructure on oxidation resistance of MoSi2 fabricated by spark plasma sintering
    Kuchino, J
    Kurokawa, K
    Shibayama, T
    Takahashi, H
    VACUUM, 2004, 73 (3-4) : 623 - 628
  • [42] Orthogonal experiment investigation on wear resistance Of MoSi2
    Chen, P
    Tang, GN
    Zhang, H
    Liu, HC
    RARE METALS, 2003, 22 (03) : 230 - 234
  • [43] Wear studies on plasma-sprayed pure and reinforced hydroxyapatite coatings
    Rattan, Vikas
    Sidhu, Tejinder Singh
    Mittal, Manoj
    MATERIALS TODAY-PROCEEDINGS, 2022, 60 : 1731 - 1735
  • [44] Improving wear resistance of plasma-sprayed calcia and magnesia-stabilized zirconia mixed coating: roles of phase stability and microstructure
    Hafez, Mohamed Abd-Elsattar
    Akila, Sameh Ahmed
    Khedr, Mohamed Atta
    Khalil, Ali Saeid
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [45] Improving wear resistance of plasma-sprayed calcia and magnesia-stabilized zirconia mixed coating: roles of phase stability and microstructure
    Mohamed Abd-Elsattar Hafez
    Sameh Ahmed Akila
    Mohamed Atta Khedr
    Ali Saeid Khalil
    Scientific Reports, 10
  • [46] Wear Resistance of Plasma-Sprayed Coatings in Intensive Abrasive Wear Conditions
    A.P. Umanskii
    A.E. Terentiev
    V.P. Brazhevsky
    A.A. Chernyshov
    V.F. Labunets
    O.V. Radko
    I.M. Zakiev
    Powder Metallurgy and Metal Ceramics, 2020, 58 : 559 - 566
  • [47] Wear Resistance of Plasma-Sprayed Coatings in Intensive Abrasive Wear Conditions
    Umanskii, A. P.
    Terentiev, A. E.
    Brazhevsky, V. P.
    Chernyshov, A. A.
    Labunets, V. F.
    Radko, O. V.
    Zakiev, I. M.
    POWDER METALLURGY AND METAL CERAMICS, 2020, 58 (9-10) : 559 - 566
  • [48] Microstructure and tribological properties of plasma-sprayed nanostructured sulfide coating
    Xu, Yang
    Guan, Yaohui
    Zheng, Zhongyu
    Tong, Xiaohui
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2006, 22 (05) : 589 - 593
  • [49] MICROSTRUCTURE OF A PLASMA-SPRAYED SUPER-ALLOY COATING SUBSTRATE
    RITTER, AM
    HENRY, MF
    JOURNAL OF MATERIALS SCIENCE, 1982, 17 (09) : 2741 - 2752