k-Nearest Neighbors for automated classification of celestial objects

被引:34
|
作者
Li LiLi [1 ,2 ,3 ]
Zhang YanXia [1 ]
Zhao YongHeng [1 ]
机构
[1] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
[2] Hebei Normal Univ, Dept Phys, Shijiazhuang 050016, Peoples R China
[3] Weishanlu Middle Sch, Tianjin 300222, Peoples R China
来源
SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY | 2008年 / 51卷 / 07期
基金
中国国家自然科学基金;
关键词
k-Nearest Neighbors; data analysis; classification; astronomical catalogues;
D O I
10.1007/s11433-008-0088-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nearest neighbors (NNs) classifiers, especially the k-Nearest Neighbors (kNNs) algorithm, are among the simplest and yet most efficient classification rules and widely used in practice. It is a nonparametric method of pattern recognition. In this paper, k-Nearest Neighbors, one of the most commonly used machine learning methods, work in automatic classification of multi-wavelength astronomical objects. Through the experiment, we conclude that the running speed of the kNN classier is rather fast and the classification accuracy is up to 97.73%. As a result, it is efficient and applicable to discriminate active objects from stars and normal galaxies with this method. The classifiers trained by the kNN method can be used to solve the automated classification problem faced by astronomy and the virtual observatory (VO).
引用
收藏
页码:916 / 922
页数:7
相关论文
共 50 条
  • [41] A FUZZY EXTENDED K-NEAREST NEIGHBORS RULE
    BEREAU, M
    DUBUISSON, B
    FUZZY SETS AND SYSTEMS, 1991, 44 (01) : 17 - 32
  • [42] Hypersphere anchor loss for K-Nearest neighbors
    Xiang Ye
    Zihang He
    Heng Wang
    Yong Li
    Applied Intelligence, 2023, 53 : 30319 - 30328
  • [43] A k-Nearest Neighbors Approach for COCOMO Calibration
    Le, Phu
    Vu Nguyen
    2017 4TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2017, : 219 - 224
  • [44] Maximizing Reverse k-Nearest Neighbors for Trajectories
    Al Rahat, Tamjid
    Arman, Arif
    Ali, Mohammed Eunus
    DATABASES THEORY AND APPLICATIONS, ADC 2018, 2018, 10837 : 262 - 274
  • [45] The research on an adaptive k-nearest neighbors classifier
    Yu, Xiaopeng
    Yu, Xiaogao
    PROCEEDINGS OF THE FIFTH IEEE INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS, VOLS 1 AND 2, 2006, : 535 - 540
  • [46] Heuristics for Computing k-Nearest Neighbors Graphs
    Chavez, Edgar
    Luduena, Veronica
    Reyes, Nora
    COMPUTER SCIENCE - CACIC 2019, 2020, 1184 : 234 - 249
  • [47] Forecasting Earnings Using k-Nearest Neighbors
    Easton, Peter D.
    Kapons, Martin M.
    Monahan, Steven J.
    Schutt, Harm H.
    Weisbrod, Eric H.
    ACCOUNTING REVIEW, 2024, 99 (03): : 115 - 140
  • [48] Ensembles of K-Nearest Neighbors and Dimensionality Reduction
    Okun, Oleg
    Priisalu, Helen
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 2032 - +
  • [49] An Interval Valued K-Nearest Neighbors Classifier
    Derrac, Joaquin
    Chiclana, Francisco
    Garcia, Salvador
    Herrera, Francisco
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 378 - 384
  • [50] Emotion recognition using speckle pattern analysis and k-nearest neighbors classification
    Lupa Yitzhak, Hadas
    Tzabari Kelman, Yarden
    Moskovenko, Alexey
    Zhovnerchuk, Evgenii
    Zalevsky, Zeev
    JOURNAL OF OPTICS, 2021, 23 (01)