Point-Based Manifold Harmonics

被引:36
|
作者
Liu, Yang [1 ]
Prabhakaran, Balakrishnan [2 ]
Guo, Xiaohu [2 ]
机构
[1] Univ Texas Dallas, Dept Comp Sci, Dallas, TX 75252 USA
[2] Univ Texas Dallas, Dept Comp Sci, Richardson, TX 75083 USA
基金
美国国家科学基金会;
关键词
Point-sampled surface; Laplace-Beltrami operator; eigenfunction; LAPLACE-BELTRAMI OPERATORS; APPROXIMATION; CONVERGENCE; DIFFUSION; SPECTRA; MESHES;
D O I
10.1109/TVCG.2011.152
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper proposes an algorithm to build a set of orthogonal Point-Based Manifold Harmonic Bases (PB-MHB) for spectral analysis over point-sampled manifold surfaces. To ensure that PB-MHB are orthogonal to each other, it is necessary to have symmetrizable discrete Laplace-Beltrami Operator (LBO) over the surfaces. Existing converging discrete LBO for point clouds, as proposed by Belkin et al. [1], is not guaranteed to be symmetrizable. We build a new point-wisely discrete LBO over the point-sampled surface that is guaranteed to be symmetrizable, and prove its convergence. By solving the eigen problem related to the new operator, we define a set of orthogonal bases over the point cloud. Experiments show that the new operator is converging better than other symmetrizable discrete Laplacian operators (such as graph Laplacian) defined on point-sampled surfaces, and can provide orthogonal bases for further spectral geometric analysis and processing tasks.
引用
收藏
页码:1693 / 1703
页数:11
相关论文
共 50 条
  • [1] Point-based rendering of non-manifold surfaces
    Balsys, Ron J.
    Suffern, K. G.
    Jones, Hum
    [J]. COMPUTER GRAPHICS FORUM, 2008, 27 (01) : 63 - 72
  • [2] Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold
    Pan, Xingang
    Tewari, Ayush
    Leimkuehler, Thomas
    Liu, Lingjie
    Meka, Abhimitra
    Theobalt, Christian
    [J]. PROCEEDINGS OF SIGGRAPH 2023 CONFERENCE PAPERS, SIGGRAPH 2023, 2023,
  • [3] Point-based CADCAM
    Cripps, RJ
    Cook, PR
    [J]. ADVANCES IN MANUFACTURING TECHNOLOGY - XIII, 1999, : 149 - 153
  • [4] Anisotropic Point-Based Fusion
    Lefloch, Damien
    Weyrich, Tim
    Kolb, Andreas
    [J]. 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 2121 - 2128
  • [5] Point-based geometric modelling
    Smith, F
    [J]. MACHINING IMPOSSIBLE SHAPES, 1999, 18 : 74 - 81
  • [6] Point-based rendering techniques
    Sainz, M
    Pajarola, R
    [J]. COMPUTERS & GRAPHICS-UK, 2004, 28 (06): : 869 - 879
  • [7] Point-based computer graphics
    Zwicker, M
    Pauly, M
    [J]. COMPUTERS & GRAPHICS-UK, 2004, 28 (06): : 799 - 800
  • [8] Point-based projective invariants
    Suk, T
    Flusser, J
    [J]. PATTERN RECOGNITION, 2000, 33 (02) : 251 - 261
  • [9] ON POINT-BASED TEMPORAL DISJOINTNESS
    GEREVINI, A
    SCHUBERT, L
    [J]. ARTIFICIAL INTELLIGENCE, 1994, 70 (1-2) : 347 - 361
  • [10] Point-based computer graphics
    Pfister, H
    Gross, M
    [J]. IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2004, 24 (04) : 22 - 23