COTTONOMICS: a comprehensive cotton multi-omics database

被引:14
|
作者
Dai, Fan [1 ]
Chen, Jiedan [1 ,2 ]
Zhang, Ziqian [1 ]
Liu, Fengjun [1 ]
Li, Jun [1 ]
Zhao, Ting [1 ]
Hu, Yan [1 ]
Zhang, Tianzhen [1 ]
Fang, Lei [1 ]
机构
[1] Zhejiang Univ, Plant Precis Breeding Acad, Coll Agr & Biotechnol, Inst Crop Sci,Zhejiang Prov Key Lab Crop Genet Re, Hangzhou 310058, Zhejiang, Peoples R China
[2] Chinese Acad Agr Sci, Tea Res Inst, Hangzhou 310008, Peoples R China
基金
美国国家科学基金会;
关键词
GENOME; POLYPLOIDIZATION; RECONSTRUCTION; CLASSIFICATION; SELECTION; ALIGNMENT; EVOLUTION; GENES;
D O I
10.1093/database/baac080
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The rapid advancement of sequencing technology, including next-generation sequencing (NGS), has greatly improved sequencing efficiency and decreased cost. Consequently, huge amounts of genomic, transcriptomic and epigenetic data concerning cotton species have been generated and released.These large-scale data provide immense opportunities for the study of cotton genomic structure and evolution, population genetic diversity and genome-wide mining of excellent genes for important traits. However, the complexity of NGS data also causes distress, as it cannot be utilized easily. Here, we presented the cotton omics data platform COTTONOMICS (http://cotton.zju.edu.cn/), an easily accessible web database that integrates 32.5TB of omics data including seven assembled genomes, resequencing data from 1180 allotetraploid cotton accessions and RNA-sequencing (RNA-seq), small RNA-sequencing (smRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), DNase hypersensitive sites sequencing (DNase-seq) and Bisulfite sequencing (BS-seq). COTTONOMICS allows users to employ various search scenarios and retrieve information concerning the cotton genomes, genomic variation (Single nucleotide polymorphisms (SNPs) and Insertion and Deletion (InDels)), gene expression, smRNA expression, epigenetic regulation and quantitative trait locus (QTLs).The user-friendly web interface offers a variety of modules for storing, retrieving, analyzing and visualizing cotton multi-omics data to diverse ends, thereby enabling users to decipher cotton population genetics and identify potential novel genes that influence agronomically beneficial traits.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] iNetModels 2.0: an interactive visualization and database of multi-omics data
    Arif, Muhammad
    Zhang, Cheng
    Li, Xiangyu
    Gungor, Cem
    Cakmak, Bugra
    Arslanturk, Metin
    Tebani, Abdellah
    Ozcan, Berkay
    Subas, Oguzhan
    Zhou, Wenyu
    Piening, Brian
    Turkez, Hasan
    Fagerberg, Linn
    Price, Nathan
    Hood, Leroy
    Snyder, Michael
    Nielsen, Jens
    Uhlen, Mathias
    Mardinoglu, Adil
    NUCLEIC ACIDS RESEARCH, 2021, 49 (W1) : W271 - W276
  • [42] Integrative multi-omics database (iMOMdb) of Asian pregnant women
    Pan, Hong
    Tan, Pei Fang
    Lim, Ives Y.
    Huan, Jason
    Teh, Ai Ling
    Chen, Li
    Gong, Min
    Tin, Felicia
    Mir, Sartaj Ahmad
    Narasimhan, Kothandaraman
    Chan, Jerry K. Y.
    Tan, Kok Hian
    Kobor, Michael S.
    Meikle, Peter J.
    Wenk, Markus R.
    Chong, Yap Seng
    Eriksson, Johan G.
    Gluckman, Peter D.
    Karnani, Neerja
    HUMAN MOLECULAR GENETICS, 2022,
  • [43] A multi-omics graph database for data integration and knowledge extraction
    Kim, Suyeon
    Thapa, Ishwor
    Ali, Hesham
    13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,
  • [44] Integrative multi-omics database (iMOMdb) of Asian pregnant women
    Pan, Hong
    Tan, Pei Fang
    Lim, Ives Y.
    Huan, Jason
    Teh, Ai Ling
    Chen, Li
    Gong, Min
    Tin, Felicia
    Mir, Sartaj Ahmad
    Narasimhan, Kothandaraman
    Chan, Jerry K. Y.
    Tan, Kok Hian
    Kobor, Michael S.
    Meikle, Peter J.
    Wenk, Markus R.
    Chong, Yap Seng
    Eriksson, Johan G.
    Gluckman, Peter D.
    Karnani, Neerja
    HUMAN MOLECULAR GENETICS, 2022, 31 (18) : 3051 - 3067
  • [45] MOPED 2.5-An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data
    Montague, Elizabeth
    Stanberry, Larissa
    Higdon, Roger
    Janko, Imre
    Lee, Elaine
    Anderson, Nathaniel
    Choiniere, John
    Stewart, Elizabeth
    Yandl, Gregory
    Broomall, William
    Kolker, Natali
    Kolker, Eugene
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2014, 18 (06) : 335 - 343
  • [46] BGFD: an integrated multi-omics database of barley gene families
    Tingting Li
    Jianxin Bian
    Minqiang Tang
    Hongbin Shangguan
    Yan Zeng
    Ruihan Luo
    Huifan Sun
    Qinglin Ke
    Xiaojun Nie
    Yihan Li
    Licao Cui
    BMC Plant Biology, 22
  • [47] Galbase: a comprehensive repository for integrating chicken multi-omics data
    Fu, Weiwei
    Wang, Rui
    Xu, Naiyi
    Wang, Jinxin
    Li, Ran
    Asadollahpour Nanaei, Hojjat
    Nie, Qinghua
    Zhao, Xin
    Han, Jianlin
    Yang, Ning
    Jiang, Yu
    BMC GENOMICS, 2022, 23 (01)
  • [48] Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review
    Vahabi, Nasim
    Michailidis, George
    FRONTIERS IN GENETICS, 2022, 13
  • [49] Galbase: a comprehensive repository for integrating chicken multi-omics data
    Weiwei Fu
    Rui Wang
    Naiyi Xu
    Jinxin Wang
    Ran Li
    Hojjat Asadollahpour Nanaei
    Qinghua Nie
    Xin Zhao
    Jianlin Han
    Ning Yang
    Yu Jiang
    BMC Genomics, 23
  • [50] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281