Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops

被引:157
|
作者
Wang, Yanting [1 ,2 ,3 ]
Fan, Chunfen [1 ,2 ,3 ]
Hu, Huizhen [1 ,2 ,3 ]
Li, Ying [1 ,2 ,3 ]
Sun, Dan [1 ,3 ,4 ]
Wang, Youmei [1 ,2 ,3 ]
Peng, Liangcai [1 ,2 ,3 ]
机构
[1] Huazhong Agr Univ, Biomass & Bioenergy Res Ctr, Wuhan 430070, Peoples R China
[2] Huazhong Agr Univ, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
[3] Huazhong Agr Univ, Coll Plant Sci & Technol, Wuhan 430070, Peoples R China
[4] Hubei Univ Technol, Coll Chem & Chem Engn, Wuhan 430068, Hubei, Peoples R China
关键词
Plant cell walls; Lignocellulose features; Bioenergy crops; Genetic manipulation; Biomass pretreatment; Enzymatic digestibility; Yeast fermentation; Lodging resistance; Biomass yield; METHYL-ESTERIFIED HOMOGALACTURONAN; R2R3-MYB TRANSCRIPTION FACTOR; INFRARED SPECTROSCOPIC ASSAY; CELLULOSE SYNTHASE COMPLEXES; PHENYLALANINE AMMONIA-LYASE; IONIC LIQUID PRETREATMENT; FERMENTABLE SUGAR YIELDS; REDUCED LIGNIN CONTENT; WHEAT EXPANSIN GENE; ENZYMATIC SACCHARIFICATION;
D O I
10.1016/j.biotechadv.2016.06.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:997 / 1017
页数:21
相关论文
共 50 条
  • [21] Biomass Recalcitrance: Deconstructing the plant Cell Wall for Bioenergy
    Trueman, Eleanor
    [J]. INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2010, 31 (01) : 54 - 55
  • [22] Genetic Engineering of Energy Crops: A Strategy for Biofuel Production in China
    Guosheng Xie1 and Liangcai Peng1
    [J]. Journal of Integrative Plant Biology, 2011, 53 (02) : 143 - 150
  • [23] Genetic modification of lignin biosynthesis for improved biofuel production
    Hisano, Hiroshi
    Nandakumar, Rangaraj
    Wang, Zeng-Yu
    [J]. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2009, 45 (03) : 306 - 313
  • [24] DEFINING OPTIMAL CONDITIONS FOR CHLORELLA VULGARIS MICROALGAE BIOMASS CELL WALLS DISRUPTION IN THE PROCESS OF BIOFUEL PRODUCTION
    Dvoretsky, D.
    Akulinin, E.
    Dvoretsky, S.
    Temnov, M.
    Androsova, A.
    [J]. ENERGY AND CLEAN TECHNOLOGIES CONFERENCE PROCEEDINGS, SGEM 2016, VOL I, 2016, : 261 - 267
  • [25] Genetic modification of lignin biosynthesis for improved biofuel production
    Hiroshi Hisano
    Rangaraj Nandakumar
    Zeng-Yu Wang
    [J]. In Vitro Cellular & Developmental Biology - Plant, 2009, 45 : 306 - 313
  • [26] Biomass of invasive plant species as a potential feedstock for bioenergy production
    Van Meerbeek, Koenraad
    Appels, Lise
    Dewil, Raf
    Calmeyn, Annelies
    Lemmens, Pieter
    Muys, Bart
    Hermy, Martin
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2015, 9 (03): : 273 - 282
  • [27] High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition
    Surendra, K. C.
    Ogoshi, Richard
    Zaleski, Halina M.
    Hashimoto, Andrew G.
    Khanal, Samir Kumar
    [J]. BIORESOURCE TECHNOLOGY, 2018, 251 : 218 - 229
  • [28] Bioenergy and biofuel production from biomass using thermochemical conversions technologies-a review
    Danso-Boateng, Eric
    Achaw, Osei-Wusu
    [J]. AIMS ENERGY, 2022, 10 (04) : 585 - 647
  • [29] Harnessing Genetic Tools for Sustainable Bioenergy: A Review of Sugarcane Biotechnology in Biofuel Production
    Ahmad, Kashif
    Ming, Ray
    [J]. AGRICULTURE-BASEL, 2024, 14 (08):
  • [30] Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion
    Bruhn, Annette
    Dahl, Jonas
    Nielsen, Henrik Bangso
    Nikolaisen, Lars
    Rasmussen, Michael Bo
    Markager, Stiig
    Olesen, Birgit
    Arias, Carlos
    Jensen, Peter Daugbjerg
    [J]. BIORESOURCE TECHNOLOGY, 2011, 102 (03) : 2595 - 2604