Pseudoinvexity, optimality conditions and efficiency in multiobjective problems; duality

被引:27
|
作者
Arana-Jimenez, A.
Rufian-Lizana, A.
Osuna-Gomez, R.
Ruiz-Garzon, G. [1 ]
机构
[1] Univ Cadiz, Fac Ciencias, Dept Estadistica Invest Operativa, E-11510 Puerto Real, Spain
[2] IES San Jose Del Valle, Cadiz 11580, Spain
[3] Univ Seville, Fac Matemat, Dept Estadistica Invest Operativa, Seville, Spain
关键词
multiobjective programming; invexity; pseudoinvexity; Kuhn-Tucker and Fritz-John optimality conditions; efficient solutions;
D O I
10.1016/j.na.2006.10.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish characterizations for efficient solutions to multiobjective programming problems, which generalize the characterization of established results for optimal solutions to scalar programming problems. So, we prove that in order for Kuhn-Tucker points to be efficient solutions it is necessary and sufficient that the multiobjective problem functions belong to a new class of functions, which we introduce. Similarly, we obtain characterizations for efficient solutions by using Fritz-John optimality conditions. Some examples are proposed to illustrate these classes of functions and optimality results. We study the dual problem and establish weak, strong and converse duality results. (C) 2007 Published by Elsevier Ltd.
引用
收藏
页码:24 / 34
页数:11
相关论文
共 50 条
  • [41] OPTIMALITY AND DUALITY FOR NON-LIPSCHITZ MULTIOBJECTIVE OPTIMIZATION PROBLEMS
    Bazine, M.
    Bennani, A.
    Gadhi, N.
    Lafhim, L.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (02) : 142 - 154
  • [42] Optimality and duality for multiobjective fractional problems with r-invexity
    Lee, Jin-Chirng
    Ho, Shun-Chin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (03): : 719 - 740
  • [43] OPTIMALITY AND DUALITY FOR SEMIDEFINITE MULTIOBJECTIVE PROGRAMMING PROBLEMS USING CONVEXIFICATORS
    Mishra, Shashi Kant
    Kumar, Rahul
    Laha, Vivek
    Maurya, Jitendra Kumar
    [J]. Journal of Applied and Numerical Optimization, 2022, 4 (01): : 103 - 108
  • [44] OPTIMALITY AND DUALITY FOR NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROBLEMS USING CONVEXIFICATORS
    Do Van Luu
    Pham Thi Linh
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [45] Optimality and Duality for Second-order Multiobjective Variational Problems
    Gulati, T. R.
    Mehndiratta, Geeta
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2010, 3 (05): : 786 - 805
  • [46] Optimality and duality for nonsmooth multiobjective fractional problems using convexificators
    Luu, Do V.A.N.
    Linh, Pham T.H.I.
    [J]. Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [47] Optimality and Duality for a Class of Nondifferentiable Multiobjective Fractional Programming Problems
    D. S. Kim
    S. J. Kim
    M. H. Kim
    [J]. Journal of Optimization Theory and Applications, 2006, 129 : 131 - 146
  • [48] OPTIMALITY CONDITIONS AND DUALITY IN SUBDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL-PROGRAMMING
    BECTOR, CR
    CHANDRA, S
    HUSAIN, I
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 79 (01) : 105 - 125
  • [49] On ε-optimality conditions for multiobjective fractional optimization problems
    Moon Hee Kim
    Gwi Soo Kim
    Gue Myung Lee
    [J]. Fixed Point Theory and Applications, 2011
  • [50] On sufficient optimality conditions for multiobjective control problems
    de Oliveira, Valeriano Antunes
    Silva, Geraldo Nunes
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (04) : 721 - 744