ON THE ADAPTIVE NADARAYA-WATSON KERNEL REGRESSION ESTIMATORS

被引:0
|
作者
Demir, S. [1 ]
Toktamis, O. [2 ]
机构
[1] Mugla Univ, Fac Arts & Sci, Dept Stat, TR-48000 Mugla, Turkey
[2] Hacettepe Univ, Fac Sci, Dept Stat, TR-06532 Ankara, Turkey
来源
关键词
Nonparametric regression; Nadaraya-Watson kernel estimator; Adaptive kernel estimation; Kernel density estimation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod distributions. In this paper, we consider the adaptive Nadaraya-Watson kernel regression estimators. The results of the simulation study show that the adaptive Nadaraya-Watson kernel estimators have better performance than the kernel estimations with fixed bandwidth.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 50 条