An Upper Bound of the Bias of Nadaraya-Watson Kernel Regression under Lipschitz Assumptions

被引:2
|
作者
Tosatto, Samuele [1 ]
Akrour, Riad [1 ]
Peters, Jan [1 ,2 ]
机构
[1] Tech Univ Darmstadt, Comp Sci Dept, D-64289 Darmstadt, Germany
[2] Max Planck Inst Intelligent Syst, Comp Sci Dept, D-70569 Stuttgart, Germany
来源
STATS | 2021年 / 4卷 / 01期
关键词
nonparametric regression; Nadaraya-Watson kernel regression; bias; BANDWIDTH SELECTION;
D O I
10.3390/stats4010001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Nadaraya-Watson kernel estimator is among the most popular nonparameteric regression technique thanks to its simplicity. Its asymptotic bias has been studied by Rosenblatt in 1969 and has been reported in several related literature. However, given its asymptotic nature, it gives no access to a hard bound. The increasing popularity of predictive tools for automated decision-making surges the need for hard (non-probabilistic) guarantees. To alleviate this issue, we propose an upper bound of the bias which holds for finite bandwidths using Lipschitz assumptions and mitigating some of the prerequisites of Rosenblatt's analysis. Our bound has potential applications in fields like surgical robots or self-driving cars, where some hard guarantees on the prediction-error are needed.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 27 条
  • [1] ON THE ADAPTIVE NADARAYA-WATSON KERNEL REGRESSION ESTIMATORS
    Demir, S.
    Toktamis, O.
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (03): : 429 - 437
  • [2] On approximations to the bias of the Nadaraya-Watson regression estimator
    Ziegler, K
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2001, 13 (04) : 583 - 589
  • [3] A NEW MODIFICATION TO THE ADAPTIVE NADARAYA-WATSON KERNEL REGRESSION ESTIMATOR
    Joshi, Venkatesh B.
    Deshpande, Bhargavi
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (04) : 245 - 256
  • [4] Weighted Nadaraya-Watson regression estimation
    Cai, ZW
    [J]. STATISTICS & PROBABILITY LETTERS, 2001, 51 (03) : 307 - 318
  • [5] On the Nadaraya-Watson kernel regression estimator for irregularly spaced spatial data
    El Machkouri, Mohamed
    Fan, Xiequan
    Reding, Lucas
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 92 - 114
  • [6] Modification of the adaptive Nadaraya-Watson kernel method for nonparametric regression (simulation study)
    Ali, Taha Hussein
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (02) : 391 - 403
  • [7] On asymptotic behavior of Nadaraya-Watson regression estimator
    Li, Jiexiang
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (19) : 5751 - 5761
  • [8] Bootstrapping stationary sequences by the Nadaraya-Watson regression estimator
    Park, C
    Kim, TY
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (04) : 399 - 407
  • [9] COMPARISON OF GEOMETRIC AND ARITHMETIC MEANS FOR BANDWIDTH SELECTION IN NADARAYA-WATSON KERNEL REGRESSION ESTIMATOR
    Xu, Li-Yuan
    Zhang, Min
    Zhu, Wei
    He, Yu-Lin
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 999 - 1004
  • [10] An Improved Nadaraya-Watson Kernel Regression Method Based on Cross Validation for Small Samples
    Zhou, Yuqing
    Li, Fengping
    Li, Pei
    Zhou, Hongming
    Xue, Wei
    Hu, Wenchao
    [J]. INTERNATIONAL JOINT CONFERENCE ON APPLIED MATHEMATICS, STATISTICS AND PUBLIC ADMINISTRATION (AMSPA 2014), 2014, : 162 - 168