Resonant scattering in graphene with a gate-defined chaotic quantum dot

被引:16
|
作者
Schneider, Martin [1 ]
Brouwer, Piet W.
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 11期
关键词
KLEIN PARADOX; REFLECTION; TRANSPORT; DIRAC;
D O I
10.1103/PhysRevB.84.115440
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the conductance of an undoped graphene sheet with two metallic contacts and an electrostatically gated island (quantum dot) between the contacts. Our analysis is based on the matrix Green function formalism, which was recently adapted to graphene by Titov et al. [Phys. Rev. Lett. 104, 076802 (2010)]. We find pronounced differences between the case of a stadium-shaped dot (which has chaotic classical dynamics) and a disk-shaped dot (which has integrable classical dynamics) in the limit that the dot size is small in comparison to the distance between the contacts. In particular, for the stadium-shaped dot the two-terminal conductance shows Fano resonances as a function of the gate voltage, which cross over to Breit-Wigner resonances only in the limit of completely separated resonances, whereas for a disk-shaped dot sharp Breit-Wigner resonances resulting from higher angular momentum remain present throughout.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    [J]. PHYSICAL REVIEW X, 2021, 11 (04)
  • [42] Preparation and Readout of Multielectron High-Spin States in a Gate-Defined GaAs/AlGaAs Quantum Dot
    Kiyama, H.
    Yoshimi, K.
    Kato, T.
    Nakajima, T.
    Oiwa, A.
    Tarucha, S.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (08)
  • [43] Scanning gate microscopy of localized states in a gate-defined bilayer graphene channel
    Gold, Carolin
    Kurzmann, Annika
    Watanabe, Kenji
    Taniguchi, Takashi
    Ensslin, Klaus
    Ihn, Thomas
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [44] Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon
    Mi, X.
    Cady, J. V.
    Zajac, D. M.
    Stehlik, J.
    Edge, L. F.
    Petta, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2017, 110 (04)
  • [45] Edgeless and purely gate-defined nanostructures in InAs quantum wells
    Mittag, Christopher
    Karalic, Matija
    Lei, Zijin
    Tschirky, Thomas
    Wegscheider, Werner
    Ihn, Thomas
    Ensslin, Klaus
    [J]. APPLIED PHYSICS LETTERS, 2018, 113 (26)
  • [46] Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots
    Bureau-Oxton, Chloe
    Lemyre, Julien Camirand
    Pioro-Ladriere, Michel
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (81):
  • [47] Gate-defined quantum-dot devices realized in InGaAs/InP by incorporating a HfO2 layer as gate dielectric
    Sun, Jie
    Larsson, Marcus
    Maximov, Ivan
    Hardtdegen, Hilde
    Xu, H. Q.
    [J]. APPLIED PHYSICS LETTERS, 2009, 94 (04)
  • [48] Gate-Defined Electron-Hole Double Dots in Bilayer Graphene
    Banszerus, L.
    Frohn, B.
    Epping, A.
    Neumaier, D.
    Watanabe, K.
    Taniguchi, T.
    Stampfer, C.
    [J]. NANO LETTERS, 2018, 18 (08) : 4785 - 4790
  • [49] Electrostatic potential shape of gate-defined quantum point contacts
    Geier, M.
    Freudenfeld, J.
    Silva, J. T.
    Umansky, V
    Reuter, D.
    Wieck, A. D.
    Brouwer, P. W.
    Ludwig, S.
    [J]. PHYSICAL REVIEW B, 2020, 101 (16)
  • [50] Collective Microwave Response for Multiple Gate-Defined Double Quantum Dots
    Lin, Ting
    Gu, Si-Si
    Xu, Yong-Qiang
    Jiang, Shun-Li
    Ye, Shu-Kun
    Wang, Bao-Chuan
    Li, Hai-Ou
    Guo, Guang-Can
    Zou, Chang-Ling
    Hu, Xuedong
    Cao, Gang
    Guo, Guo-Ping
    [J]. NANO LETTERS, 2023, 23 (10) : 4176 - 4182