Splitting techniques for the Navier-Stokes equations

被引:0
|
作者
Haschke, H [1 ]
Heinrichs, W [1 ]
机构
[1] Univ Essen Gesamthsch, D-45141 Essen, Germany
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A pseudo spectral approximation for the Navier-Stokes equations is presented. After considering the unsteady Stokes equations we use the Uzawa algorithm to decouple the spectral system into Helmholtz equations for the velocity components and an equation with the Pseudo-Laplacian for the pressure. In order to avoid spurious modes the pressure is approximated with polynomials of one degree lower than the velocity on staggered grids. For the time discretization a high order backward differentiation scheme for the intermediate velocity,is combined with a high order extrapolant for the pressure.
引用
收藏
页码:S763 / S764
页数:2
相关论文
共 50 条
  • [31] A time-splitting approach to solving the Navier-Stokes equations
    Batten, P
    Ingram, DM
    Saunders, R
    Causon, DM
    [J]. COMPUTERS & FLUIDS, 1996, 25 (04) : 421 - 431
  • [32] Viscosity Splitting Method for Three Dimensional Navier-Stokes Equations
    应隆安
    [J]. ActaMathematicaSinica, 1988, (03) : 210 - 226
  • [33] SEMIGROUP SPLITTING AND CUBATURE APPROXIMATIONS FOR THE STOCHASTIC NAVIER-STOKES EQUATIONS
    Doersek, Philipp
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 729 - 746
  • [34] Spectral Direction Splitting Schemes for the Incompressible Navier-Stokes Equations
    Chen, Lizhen
    Shen, Jie
    Xu, Chuanju
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2011, 1 (03) : 215 - 234
  • [35] FLUX-COORDINATE SPLITTING TECHNIQUE FOR THE NAVIER-STOKES EQUATIONS
    SO, RMC
    ZHANG, HS
    [J]. AIAA JOURNAL, 1991, 29 (09) : 1418 - 1425
  • [36] Domain decomposition techniques to solve the Navier-Stokes equations
    Churbanov, AG
    Vabishchevich, PN
    [J]. PARALLEL COMPUTATIONAL FLUID DYNAMICS: ADVANCED NUMERICAL METHODS SOFTWARE AND APPLICATIONS, 2004, : 145 - 151
  • [37] A new class of fractional step techniques for the incompressible Navier-Stokes equations using direction splitting
    Guermond, Jean-Luc
    Minev, Peter D.
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) : 581 - 585
  • [38] Stokes and Navier-Stokes equations with Navier boundary condition
    Acevedo, Paul
    Amrouche, Cherif
    Conca, Carlos
    Ghosh, Amrita
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (02) : 115 - 119
  • [39] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [40] NAVIER-STOKES AND STOCHASTIC NAVIER-STOKES EQUATIONS VIA LAGRANGE MULTIPLIERS
    Cruzeiro, Ana Bela
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04): : 553 - 560