Timelike surfaces with constant mean curvature in Lorentz three-space

被引:16
|
作者
López, R [1 ]
机构
[1] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
D O I
10.2748/tmj/1178207753
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cyclic surface in the Lorentz-Minkowski three-space is one that is foliated by circles. We classify all maximal cyclic timelike surfaces in this space, obtaining different families of non-rotational maximal surfaces. When the mean curvature is a non-zero constant, we prove that if the surface is foliated by circles in parallel planes, then it must be rotational. In particular, we obtain all timelike surfaces of revolution with constant mean curvature.
引用
收藏
页码:515 / 532
页数:18
相关论文
共 50 条
  • [41] On space-like hypersurfaces with constant mean curvature in a Lorentz manifold
    Suh, YJ
    Choi, YS
    Yang, HY
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (01): : 47 - 70
  • [42] Timelike surfaces of constant mean curvature ±1 in anti-de Sitter 3-space ℍ31(−1)
    Sungwook Lee
    [J]. Annals of Global Analysis and Geometry, 2006, 29 : 355 - 401
  • [43] Fuchs convex surfaces in Lorentz space-forms of constant curvature
    Labourie, F
    Schlenker, JM
    [J]. MATHEMATISCHE ANNALEN, 2000, 316 (03) : 465 - 483
  • [44] THREE DIMENSIONAL KINEMATIC SURFACES WITH CONSTANT SCALAR CURVATURE IN LORENTZ-MINKOWSKI 7-SPACE
    Solouma, E. M.
    Wageeda, M. M.
    [J]. BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 8 (04): : 23 - 32
  • [45] SURFACES WITH CONSTANT MEAN CURVATURE
    HILDERBR.S
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (02) : 107 - &
  • [46] SURFACES OF CONSTANT MEAN CURVATURE
    WOLF, JA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (05) : 1103 - &
  • [47] Surfaces with constant mean curvature
    Perdomol, Oscar M.
    [J]. BOLETIN DE MATEMATICAS, 2011, 18 (02): : 157 - 182
  • [48] Constant mean curvature surfaces
    Meeks, William H., III
    Perez, Joaquin
    Tinaglia, Giuseppe
    [J]. ADVANCES IN GEOMETRY AND MATHEMATICAL PHYSICS, 2016, 21 : 179 - +
  • [49] Boundary expansions for constant mean curvature surfaces in the hyperbolic space
    Qing Han
    Yue Wang
    [J]. Mathematische Zeitschrift, 2022, 300 : 851 - 879
  • [50] The Dirichlet problem for constant mean curvature surfaces in Heisenberg space
    Alias, Luis J.
    Dajczer, Marcos
    Rosenberg, Harold
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (04) : 513 - 522