On the domain of analyticity of solutions to semilinear Klein-Gordon equations

被引:19
|
作者
Panizzi, Stefano [1 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
关键词
Semilinear Klein-Gordon equation; Analytical solutions; Gevrey class regularity; Analyticity radius; Temporal asymptotics; NONLINEAR HYPERBOLIC SYSTEMS; SPATIAL ANALYTICITY; EVOLUTION-EQUATIONS; REGULARITY; RADIUS;
D O I
10.1016/j.na.2011.11.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial-value problems for semilinear Klein-Gordon equations u(tt) - Delta(x)u + u + f (u) = 0 with periodic boundary conditions. Assuming that both the initial data and the nonlinear forcing term f (u) are analytic, we provide explicit lower bounds on the decay of the radius rho(t) of analyticity of the solutions as a function of time. In particular, in one space dimension, with u real valued and f (u) = u(2k+1), we prove that the decay of rho(t) is not worse than 1/t. The results are given in a general framework, including Gevrey class solutions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2841 / 2850
页数:10
相关论文
共 50 条
  • [41] New exact solutions of Klein-Gordon
    Lu D.
    Yang L.
    Hong B.
    Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2010, 31 (01): : 120 - 124
  • [42] BILINEAR FORM AND SOLITON SOLUTIONS FOR THE COUPLED NONLINEAR KLEIN-GORDON EQUATIONS
    Li, He
    Meng, Xiang-Hua
    Tian, Bo
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2012, 26 (15):
  • [43] RELATIONS AMONG SOLUTIONS FOR WAVE AND KLEIN-GORDON EQUATIONS FOR DIFFERENT DIMENSIONS
    GIAMBIAGI, JJ
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1994, 109 (06): : 635 - 644
  • [44] NUMERICAL-SOLUTIONS OF KLEIN-GORDON EQUATIONS WITH QUADRATIC AND CUBIC NONLINEARITY
    FUSAOKA, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (02) : 455 - 463
  • [45] NONDISPERSIVE SOLUTIONS OF THE KLEIN-GORDON EQUATION
    HILLION, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) : 1817 - 1821
  • [46] New doubly periodic solutions for the coupled nonlinear Klein-Gordon equations
    Liu, CP
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (01) : 13 - 16
  • [47] CONTINUUM SOLUTIONS OF THE KLEIN-GORDON EQUATION
    JANSEN, G
    PUSCH, M
    SOFF, G
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1988, 8 (04): : 315 - 327
  • [49] ABSENCE OF DISSIPATIVE SOLUTIONS OF THE SCHRODINGER AND KLEIN-GORDON EQUATIONS WITH LOGARITHMIC NONLINEARITY
    BRITO, R
    CUESTA, JA
    RANADA, AF
    PHYSICS LETTERS A, 1988, 128 (6-7) : 360 - 366
  • [50] INVARIANT INNER PRODUCTS ON SPACES OF SOLUTIONS OF THE KLEIN-GORDON AND HELMHOLTZ EQUATIONS
    STEINBERG, S
    WOLF, KB
    JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (08) : 1660 - 1663