On the domain of analyticity of solutions to semilinear Klein-Gordon equations

被引:19
|
作者
Panizzi, Stefano [1 ]
机构
[1] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
关键词
Semilinear Klein-Gordon equation; Analytical solutions; Gevrey class regularity; Analyticity radius; Temporal asymptotics; NONLINEAR HYPERBOLIC SYSTEMS; SPATIAL ANALYTICITY; EVOLUTION-EQUATIONS; REGULARITY; RADIUS;
D O I
10.1016/j.na.2011.11.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider initial-value problems for semilinear Klein-Gordon equations u(tt) - Delta(x)u + u + f (u) = 0 with periodic boundary conditions. Assuming that both the initial data and the nonlinear forcing term f (u) are analytic, we provide explicit lower bounds on the decay of the radius rho(t) of analyticity of the solutions as a function of time. In particular, in one space dimension, with u real valued and f (u) = u(2k+1), we prove that the decay of rho(t) is not worse than 1/t. The results are given in a general framework, including Gevrey class solutions. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2841 / 2850
页数:10
相关论文
共 50 条
  • [1] Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes
    Galstian, Anahit
    Yagdjian, Karen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 : 339 - 356
  • [2] Solutions of the perturbed Klein-Gordon equations
    Biswas, A.
    Ebadi, G.
    Fessak, M.
    Johnpillai, A. G.
    Johnson, S.
    Krishnan, E. V.
    Yildirim, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2012, 36 (A4): : 431 - 452
  • [3] Long time existence problems for semilinear Klein-Gordon equations
    Benoaga, Laurentiu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (3-4) : 149 - 154
  • [4] A FAMILY OF NONLINEAR KLEIN-GORDON EQUATIONS AND THEIR SOLUTIONS
    GRUNDLAND, AM
    INFELD, E
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) : 2498 - 2503
  • [5] LOCALIZED SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS
    WERLE, J
    PHYSICS LETTERS B, 1977, 71 (02) : 367 - 368
  • [6] The Existence and Nonexistence of Global Solutions of the Cauchy Problem for Systems of Three Semilinear Klein-Gordon Equations
    Aliev, A. B.
    Yusifova, G., I
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2018, 8 (01): : 116 - 139
  • [7] Small data blow-up for semilinear Klein-Gordon equations
    Keel, M
    Tao, T
    AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (03) : 629 - 669
  • [8] On similarity in the evolution of semilinear wave and Klein-Gordon equations: Numerical surveys
    Kycia, Radoslaw A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [9] Small amplitude periodic solutions of Klein-Gordon equations
    Lu, Nan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (05): : 1255 - 1272
  • [10] Non Global Solutions For a Class of Klein-Gordon Equations
    Saanouni, T.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2021, 11 (02): : 39 - 47