Plasma-treatment induced H2O dissociation for the enhancement of photocatalytic CO2 reduction to CH4 over graphitic carbon nitride

被引:49
|
作者
Jiang, Kexin [1 ]
Zhu, Li [2 ]
Wang, Zihua [2 ]
Liu, Kang [2 ]
Li, Hongmei [2 ]
Hu, Junhua [3 ]
Pan, Hao [4 ]
Fu, Junwei [2 ]
Zhang, Ning [5 ]
Qiu, Xiaoqing [1 ]
Liu, Min [2 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, 932 South Lushan Rd, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Phys & Elect, 932 South Lushan Rd, Changsha 410083, Hunan, Peoples R China
[3] Zhengzhou Univ, Sch Mat Sci & Engn, 100 Kexue Ave, Zhengzhou 450001, Henan, Peoples R China
[4] Cent South Univ, Xiangya Stomatol Hosp, Dept Periodont & Oral Mucosal Sect, 72 Xiangya Rd, Changsha 410008, Hunan, Peoples R China
[5] Cent South Univ, Sch Mat Sci & Engn, 932 South Lushan Rd, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Carbon nitride; CO2; reduction; H2O dissociation; Product selectivity; G-C3N4; PHOTOCATALYST; CHARGE-TRANSFER; DOPED G-C3N4; EFFICIENT; PHOTOREDUCTION; SEMICONDUCTOR; PERFORMANCE; GRAPHENE; WATER;
D O I
10.1016/j.apsusc.2019.145173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Though graphitic carbon nitride (g-C3N4) is a star photocatalyst for CO2 reduction, its unsatisfactory efficiency and lower reduced-state product (primary product is CO) greatly limit the further application. Dissociation of H2O is known as key step to provide abundant protons for CO2 reduction. The sluggish kinetic of H2O dissociation on g-C3N4 restricts the generation of higher reduced-state hydrocarbon products. Herein, we designed holey g-C3N4 nanosheets with numerous surface defects by Ar plasma treatment. Density functional theoretical (DFT) calculations prove the Ar plasma-treated g-C3N4 (P-x-CN) exhibits better H2O adsorption and dissociation abilities than pure g-C3N4. The separation of photogenerated charge carriers in P-x-CN is also more efficient than pure g-C3N4, which offers higher density of surface photogenerated electrons. The probability of multiple electron reduction reactions to hydrocarbon products greatly increases. As a result, the optimal Ar plasma-treated g-C3N4 (P-80-CN) shows a 40 times higher efficiency of CO2 reduction to CH4 than the pure g-C3N4. This work demonstrates the important role of H2O adsorption and dissociation in tuning product selectivity of CO2 reduction reactions, and provides an effective plasma treatment to modify the surface structure of photocatalysts.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Photocatalytic Reduction of CO2 into CH4 Using SrB2O4 Catalyst
    Guo Li-Mei
    Kuang Yuan-Jiang
    Yang Xiao-Dan
    Yu Yan-Long
    Yao Jiang-Hong
    Cao Ya-An
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (02) : 397 - 402
  • [22] Selective photocatalytic reduction of CO2 by H2O/H2 to CH4 and CH3OH over Cu-promoted In2O3/TiO2 nanocatalyst
    Tahir, Muhammad
    Tahir, Beenish
    Amin, Nor Aishah Saidina
    Alias, Hajar
    APPLIED SURFACE SCIENCE, 2016, 389 : 46 - 55
  • [23] Photocatalytic reduction of CO2 with H2O to CH4 on Cu(I) supported TiO2 nanosheets with defective {001} facets
    Zhu, Shuying
    Liang, Shijing
    Tong, Yuecong
    An, Xiaohan
    Long, Jinlin
    Fu, Xianzhi
    Wang, Xuxu
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (15) : 9761 - 9770
  • [24] Enhanced Photocatalytic CO2 Reduction by Amine Functionalization of Graphitic Carbon Nitride
    Lachance, Robert
    Adeli, Babak
    Taghipour, Fariborz
    SOLAR RRL, 2024, 8 (07)
  • [25] Targeted regulation of exciton dissociation in graphitic carbon nitride by vacancy modification for efficient photocatalytic CO2 reduction
    Li, Fang
    Yue, Xiaoyang
    Zhang, Dainan
    Fan, Jiajie
    Xiang, Quanjun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 292
  • [26] Enhanced and selective photocatalytic reduction of CO2 by H2O over strategically doped Fe and Cr into porous boron carbon nitride
    Ojha, Niwesh
    Bajpai, Abhinav
    Kumar, Sushant
    CATALYSIS SCIENCE & TECHNOLOGY, 2020, 10 (08) : 2663 - 2680
  • [27] REACTIONS OF O2+.O2 WITH CO2, O3 AND CH4 AND O2+.O3 WITH CH4 AND H2O
    DOTAN, I
    FEHSENFELD, FC
    ALBRITTON, DL
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (02): : 156 - 157
  • [28] Targeted H2O activation to manipulate the selective photocatalytic reduction of CO2 to CH3OH over carbon nitride-supported cobalt sulfide
    Ma, Minzhi
    Huang, Zeai
    Wang, Rui
    Zhang, Ruiyang
    Yang, Tian
    Rao, Zhiqiang
    Fa, Wenjun
    Zhang, Fengying
    Cao, Yuehan
    Yu, Shan
    Zhou, Ying
    GREEN CHEMISTRY, 2022, 24 (22) : 8791 - 8799
  • [29] Database of thermophysical properties of H2/CO2/CO/CH4/H2O mixtures
    Li, Fengyi
    Ma, Weigang
    Zhang, Xing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (44) : 16923 - 16935
  • [30] An integrated photocatalytic redox architecture for simultaneous overall conversion of CO2 and H2O toward CH4 and H2O2
    Nasir, Muhammad Salman
    Sheng, Bowen
    Zhao, Ying
    Ye, Haotian
    Song, Jun
    Li, Jinglin
    Wang, Ping
    Wang, Tao
    Wang, Xinqiang
    Huang, Zhen
    Zhou, Baowen
    SCIENCE BULLETIN, 2025, 70 (03) : 373 - 382