Simultaneous Multi-Level Descriptor Learning and Semantic Segmentation for Domain-Specific Relocalization

被引:1
|
作者
Wu, Xiaolong [1 ]
Chen, Yiye [1 ,2 ]
Pradalier, Cedric
Vela, Patricio A. [1 ]
机构
[1] Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] GeorgiaTech, CNRS, UMI2958, Sch Interact Comp, F-57070 Metz, France
基金
美国国家科学基金会;
关键词
D O I
10.1109/ICRA48506.2021.9561964
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a semi-supervised framework for multi-level description learning aiming for robust and accurate camera relocalization across large perception variations. Our proposed network, namely DLSSNet, simultaneously learns weakly-supervised semantic segmentation and local feature description in the hierarchy. Therefore, the augmented descriptors, trained in an end-to-end manner, provide a more stable high-level representation for local feature dis-ambiguity. To facilitate end-to-end semantic description learning, the descriptor segmentation module is proposed to jointly learn semantic descriptors and cluster centers using standard semantic segmentation loss. We show that our model can be easily fine-tuned for domain-specific usage without any further semantic annotations, instead, requiring only 2D-2D pixel correspondences. The learned descriptors, trained with our proposed pipeline, can boost the cross-season localization performance against other state-of-the-arts.
引用
收藏
页码:5868 / 5875
页数:8
相关论文
共 50 条
  • [31] Semantic Lexical Alignment for Domain-specific Ontologies
    Abu-Shareha, Ahmad Adel
    Mandava, Rajeswari
    Ramachandram, Dhanesh
    TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 1458 - 1464
  • [32] Metamodelling of domain-specific standards for semantic interoperability
    Hasselbring, W
    Pedersen, S
    PROFESSIONAL KNOWLEDGE MANAGEMENT, 2005, 3782 : 557 - 559
  • [33] Semantic extensions to domain-specific markup languages
    Varde, A
    Rundensteiner, E
    Mani, M
    Maniruzzaman, M
    Sisson, RD
    INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 2, PROCEEDINGS, 2004, : 55 - 60
  • [34] Multi-Level Domain Adaptive Learning for Cross-Domain Detection
    Xie, Rongchang
    Yu, Fei
    Wang, Jiachao
    Wang, Yizhou
    Zhang, Li
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3213 - 3219
  • [35] Simultaneous arteriole and venule segmentation with domain-specific loss function on a new public database
    Xu, Xiayu
    Wang, Rendong
    Lv, Peilin
    Gao, Bin
    Li, Chan
    Tian, Zhiqiang
    Tan, Tao
    Xu, Feng
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07): : 3153 - 3166
  • [36] Unsupervised domain adaptation multi-level adversarial learning-based crossing-domain retinal vessel segmentation
    Liu J.
    Zhao J.
    Xiao J.
    Zhao G.
    Xu P.
    Yang Y.
    Gong S.
    Computers in Biology and Medicine, 2024, 178
  • [37] Learning multi-level structural information for small organ segmentation
    Liu, Yueyun
    Duan, Yuping
    Zeng, Tieyong
    SIGNAL PROCESSING, 2022, 193
  • [38] Multi-level graph convolutional recurrent neural network for semantic image segmentation
    Jiang, Dingchao
    Qu, Hua
    Zhao, Jihong
    Zhao, Jianlong
    Liang, Wei
    TELECOMMUNICATION SYSTEMS, 2021, 77 (03) : 563 - 576
  • [39] MFANet: A Multi-Level Feature Aggregation Network for Semantic Segmentation of Land Cover
    Chen, Bingyu
    Xia, Min
    Huang, Junqing
    REMOTE SENSING, 2021, 13 (04) : 1 - 20
  • [40] Multi-level graph convolutional recurrent neural network for semantic image segmentation
    Dingchao Jiang
    Hua Qu
    Jihong Zhao
    Jianlong Zhao
    Wei Liang
    Telecommunication Systems, 2021, 77 : 563 - 576