Data-driven identification of dynamical models using adaptive parameter sets

被引:7
|
作者
Wilson, Dan [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
SPECTRAL PROPERTIES; KOOPMAN OPERATOR; PHASE REDUCTION; FLUID-FLOWS; SYSTEMS; DECOMPOSITION; INPUTS;
D O I
10.1063/5.0077447
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents two data-driven model identification techniques for dynamical systems with fixed point attractors. Both strategies implement adaptive parameter update rules to limit truncation errors in the inferred dynamical models. The first strategy can be considered an extension of the dynamic mode decomposition with control (DMDc) algorithm. The second strategy uses a reduced order isostable coordinate basis that captures the behavior of the slowest decaying modes of the Koopman operator. The accuracy and robustness of both model identification algorithms is considered in a simple model with dynamics near a Hopf bifurcation. A more complicated model for nonlinear convective flow past an obstacle is also considered. In these examples, the proposed strategies outperform a collection of other commonly used data-driven model identification algorithms including Koopman model predictive control, Galerkin projection, and DMDc.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Selecting and weighting dynamical models using data-driven approaches
    Le Bras, Pierre
    Sevellec, Florian
    Tandeo, Pierre
    Ruiz, Juan
    Ailliot, Pierre
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2024, 31 (03) : 303 - 317
  • [2] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    [J]. 2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475
  • [3] Error bounds for data-driven models of dynamical systems
    Oleng, Nicholas O.
    Gribok, Andrei
    Reifman, Jaques
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (05) : 670 - 679
  • [4] An adaptive parallel tempering method for the dynamic data-driven parameter estimation of nonlinear models
    Armstrong, Matthew J.
    Beris, Antony N.
    Wagner, Norman J.
    [J]. AICHE JOURNAL, 2017, 63 (06) : 1937 - 1958
  • [5] Data-Driven Identification of Nonlinear Flame Models
    Ghani, Abdulla
    Boxx, Isaac
    Noren, Carrie
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [6] Data-Driven Identification Constraints for DSGE Models
    Lanne, Markku
    Luoto, Jani
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 2018, 80 (02) : 236 - 258
  • [7] DATA-DRIVEN IDENTIFICATION OF NONLINEAR FLAME MODELS
    Ghani, Abdulla
    Boxx, Isaac
    Noren, Carrie
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2020: TURBOMACHINERY TECHNICAL CONFERENCE AND EXHIBITION, VOL 4A, 2020,
  • [8] Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods
    Hao Chen
    [J]. Calcolo, 2023, 60
  • [9] Data-driven sparse identification of nonlinear dynamical systems using linear multistep methods
    Chen, Hao
    [J]. CALCOLO, 2023, 60 (01)
  • [10] Data-Driven Performance Monitoring of Dynamical Systems Using Granger Causal Graphical Models
    Saha, Homagni
    Liu, Chao
    Jiang, Zhanhong
    Sarkar, Soumik
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2020, 142 (08):