ON CASSON-TYPE INSTANTON MODULI SPACES OVER NEGATIVE DEFINITE 4-MANIFOLDS

被引:1
|
作者
Lobb, Andrew [1 ]
Zentner, Raphael [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW11 7AZ, England
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2011年 / 62卷 / 02期
关键词
SPHERE BUNDLES;
D O I
10.1093/qmath/hap042
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently Andrei Teleman considered instanton moduli spaces over negative definite 4-manifolds X with b(2)(X) >= 1. If b(2)(X) is divisible by four and b(1)(X) = 1 a gauge-theoretic invariant can be defined; it is a count of flat connections modulo the gauge group. Our first result shows that if such a moduli space is non-empty and the manifold admits a connected sum decomposition X congruent to X(1)#X(2), then both b(2)(X(1)) and b(2)(X(2)) are divisible by four; this rules out a previously naturally appearing source of 4-manifolds with non-empty moduli space. We give in some detail a construction of negative definite 4-manifolds which we expect will eventually provide examples of manifolds with non-empty moduli space.
引用
收藏
页码:433 / 450
页数:18
相关论文
共 50 条