ON THE INSTANTON MODULI SPACES OF NEGATIVE DIMENSIONS

被引:0
|
作者
Cartas-Fuentevilla, R. [1 ]
机构
[1] Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
关键词
Instantons; zero-dimensional moduli space; four-dimensional flat connections; DUALITY;
D O I
10.1142/S0219887812200216
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that if the contribution of flat connections on the dimension of the moduli spaces of Yang-Mills instantons and anti-instantons is appropriately taken into the account, then the inadmissible cases of negative dimensions may be reduced to zero-dimensional moduli spaces, corresponding to a collection of points, and whose counting will correspond to the Donaldson invariant of the base manifold. These results will lead to a possible description of that invariant in terms of flat connections with diverse applications, for example for testing the conjecture on its equivalence to the Seiberg-Witten invariant, and for the study of the qualitative and quantitative aspects of the gauge/gravity duality.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the symplectic structure of instanton moduli spaces
    Bielawski, Roger
    Pidstrygach, Victor
    [J]. ADVANCES IN MATHEMATICS, 2011, 226 (03) : 2796 - 2824
  • [2] Spin structures on instanton moduli spaces
    Kamiyama, Yasuhiko
    Kishimoto, Daisuke
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (01) : 35 - 43
  • [3] Homology of the completion of instanton moduli spaces
    Kamiyama, Y
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2003, 10 (02) : 169 - 178
  • [4] THE BASED SU(N)-INSTANTON MODULI SPACES
    TIAN, YL
    [J]. MATHEMATISCHE ANNALEN, 1994, 298 (01) : 117 - 139
  • [5] Generalized Kahler Geometry of Instanton Moduli Spaces
    Bursztyn, Henrique
    Cavalcanti, Gil R.
    Gualtieri, Marco
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) : 831 - 860
  • [6] INSTANTON MODULI SPACES AND W-ALGEBRAS
    Braverman, Alexander
    Finkelberg, Michael
    Nakajima, Hiraku
    [J]. ASTERISQUE, 2016, (385) : 1 - 126
  • [7] ON CASSON-TYPE INSTANTON MODULI SPACES OVER NEGATIVE DEFINITE 4-MANIFOLDS
    Lobb, Andrew
    Zentner, Raphael
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (02): : 433 - 450
  • [8] Generalized Kähler Geometry of Instanton Moduli Spaces
    Henrique Bursztyn
    Gil R. Cavalcanti
    Marco Gualtieri
    [J]. Communications in Mathematical Physics, 2015, 333 : 831 - 860
  • [10] Smoothness on bubble tree compactified instanton moduli spaces
    Bohui Chen
    [J]. Acta Mathematica Sinica, English Series, 2010, 26 : 209 - 240